首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The imaging gamma-ray telescope COMPTEL, capable of detecting gamma rays in the 1 to 30 MeV range, is one of four experiments onboard NASA's Gamma-Ray Observatory GRO. Besides its primary objectives COMPTEL will contribute to the understanding of cosmic gamma-ray bursts. Summarising, COMPTEL localises bursts (S (E > 1 MeV) ≥ 2.10−6 erg/cm2) within 1 sr FOV to better than 1° at medium gamma-ray energies, measures continuum energy spectra in the range 0.1 MeV to 20 MeV with fluence S ≥ 6.9 10−7 erg/cm2 (5σ, E≥100 keV), measures gamma-ray lines with detector resolution 9.6% (at 0.5 MeV) and 7.0% (at 1.5 MeV) and determines time histories of both gamma-ray line and continuum emission with t ≥ 0.1 sec resolution.  相似文献   

2.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   

3.
Centaurus A (Cen A, NGC 5128) is the nearest active galaxy and, notably, the viewing angle with respect to the jet axis is very large (> 70°). A first contemporaneous OSSE, COMPTEL, and EGRET spectrum obtained in October 1991 covers an energy range from 50 keV up to 1 GeV. This γ-ray broad-band spectrum was taken when Cen A was in an intermediate emission state as defined by the BATSE X-ray light-curve. The first simultaneous multiwavelength spectrum from radio to γ-rays was measured in July 1995 when Cen A was in a low emission state (the prevailing state for the last 7 years). The different spatial and temporal resolution in the different frequency regimes produces problems in the construction and interpretation of the multiwavelength spectra. These are addressed in this paper. The detection of emission > 1 MeV makes the inclusion of such high-energy emission into models for the spectral energy distribution mandatory.  相似文献   

4.
Pulsar measurements performed by the experiment COMPTEL, aboard the Compton Gamma Ray Observatory, are described. The main results refer to the Crab and Vela pulsars whose pulse shape characteristics are given in some detail and light curves are compared with those above 50 MeV, as observed by the COS-B satellite. No other gamma-ray pulsars have been detected to date by COMPTEL, the upper limit on the pulsed signal from Geminga being compatible with indications by other experiments.  相似文献   

5.
The COMPTEL experiment on GRO images 0.7 – 30 MeV celestial gamma-radiation that falls within its 1 steradian field of view. During the first fifteen months in orbit, preliminary localizations from BATSE triggers indicated that about 1 in 6 cosmic events could have fallen within COMPTEL's field of view. We summarize work on the brightest of these gamma-ray bursts and present new position constraints for GRB 911118 and GRB 920622.  相似文献   

6.
During the first part of the COMPTON Gamma Ray Observatory sky survey, COMPTEL has detected the quasars 3C273 and 3C279 and the radio galaxy Centaurus A. This paper summarizes the preliminary findings and gives an upper limit on the MeV flux of the Seyfert galaxy NGC4151.  相似文献   

7.
The COMPTEL instrument onboard the Compton Gamma Ray Observatory (CGRO) has been used to measure the variation of the atmospheric neutron flux below 5 MeV as a function of vertical cutoff rigidity and spacecraft orientation at an altitude of 450 km. The instrumental 2.2 MeV background line, resulting from thermal neutron capture on hydrogen, was used for the measurement. The dependence of the 2.2 MeV rate on rigidity and geocentre zenith can be described by an analytic function: the line rate decreases linearly with geocentre zenith, and decreases exponentially with the vertical cutoff rigidity. The flux varies on average by about a factor of 3.7 between the extremes in rigidity, and by a factor of 1.7 between the extremes of spacecraft orientation with respect to the Earth. We believe that mass shielding is more important in attenuating the atmospheric albedo than as a source of secondary neutrons. The COMF'TEL instrument is well suited for a long-duration study of the dependence of the neutron flux on the vertical cutoff rigidity and the solar cycle.  相似文献   

8.
On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (>12.8 MeV) neutron flux near an altitude of 450 km. The Dl modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo.  相似文献   

9.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

10.
A strong, confirmed gamma-ray burst was observed by a background-monitoring scintillation detector on the Spacelab 2 mission. The peak of the burst was at 00:56:38 UT on August 5, 1985. The large size of the detector allowed observations up to 16 MeV with high efficiency. A high data rate provided time-resolved observations over the energy range from 60 keV to 16 MeV, limited only by counting statistics.The burst was dominated by a single peak, ∼2 s wide, with softer, lower-level emission lasting ∼20 s> after the main peak. There was no evidence for time structure less than ∼0.2 s anywhere in the burst in any energy range. These characteristics are similar to a sizeable fraction (∼25%) of burst seen in the Konus catalog and we suggest that they are distinct from the more complex, “spiky” bursts and may have a different emission mechanism.In the energy range from ∼560 keV to ∼10 meV, the burst peaks ∼0.3 s before the peak at lower energies. Radiation in the energy range ∼10 to ∼16 MeV was detected at a confidence level of >96%, about 3 s before the lower energy radiation with roughly the same pulse width. This radiation is not detected during the main part of the burst. The energy of this burst in the range above 1 MeV is a significant fraction of the total burst energy, confirming the earlier SMM results.  相似文献   

11.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

12.
COS-B gamma-ray data (70–5000 MeV) in the latitude range 10°< |b| <90° are compared with the expected emission from cosmic-ray interactions with interstellar gas. An additional component is found to be necessary to explain the latitude dependence of the emission. Two possible origins for this component are discussed: a gamma-ray halo around the Galaxy and a local emission region.  相似文献   

13.
During a balloon flight of the MISO telescope on 1980 May 17, the Crab Nebula and the Seyfert galaxy NGC 4151 were studied over the photon energy range 0.03 –16 MeV. The photon spectrum of the Crab Nebula was measured up to ~ 2 MeV. No gamma-ray emission from NGC 4151 was detected on this occasion.  相似文献   

14.
During two 14-day periods in January 1992 and March 1992, several AGN which have been in the wide field of view of COMPTEL and EGRET at that time were monitored optically for variations in intensity and polarization. We report on first results of this correlated optical and CGRO observations.  相似文献   

15.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

16.
A map of the galactic center region in the 1.8 MeV gamma-ray line from radioactive Al26 was derived from balloon flight data of the MPI Compton telescope. The image of the observed region of the sky is consistent with a point source origin at l = 1° ± 4°, b = −30 ± 4°. Diffuse emission models from unresolved candidate sources like supernovae, novae, Wolf-Rayet stars, and massive stars fit our data worse than a point source, but cannot be rejected definitely.  相似文献   

17.
The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.  相似文献   

18.
We present a large area, balloon borne, NaI(Tl) detector for low-energy gamma rays with temporal signature : FIGARO.The main detector is a mosaic of 12 NaI(Tl) tiles 22.5 × 15 × 5 cm, for a total geometric area of 4050 cm2.In the energy band 140 keV - 6 MeV, the expected background counting rate at float altitude is in the range of two to three thousands counts per second.For pulsar analysis the expected 3δ sensitivity for 5 hours exposition time is 2.5 10?4 ph/cm2.s.MeV (150–500 keV) 1.5 10?4 ph/cm2.s.MeV (1–6 MeV). This performance, together with the large effective area and the relatively short duration of a balloon flight, make FIGARO particularly suitable for the identification of sources by means of temporal analysis.For objectives in the Northern sky, including the Crab pulsar, a transmediterranean flight is planned for the summer of 1982 ; a Southern mission is scheduled in Brazil for the fall of 1983 (Vela, PSR 1822-09).  相似文献   

19.
Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1–5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ∼1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.  相似文献   

20.
High Energy Charged Particle Experiment (HECPE) is to measure the fluxes of MeV electrons and tens of MeV protons. The two satellites of KuaFu-B are in the same polar orbit with apogee 7.0RE, perigee 1.8RE. They can sweep large L values and pass through the inner and outer radiation belts. The high energy electrons and protons in the radiation belts are principal sources for failures of satellites and spacecrafts in the Earth orbits. The enhancements of the high energy electrons and protons, so-called energetic particle events, are important phenomena of the Space Weather. The energy ranges monitored by HECPE are 0.3–0.5 MeV, 0.5–1.0 MeV, 1.0–2.0 MeV, and E > 2.0 MeV for electrons, 5–10 MeV, 10–20 MeV, 20–40 MeV, and 40–80 MeV for protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号