首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity’s self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society’s values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.  相似文献   

2.
《Acta Astronautica》2014,93(2):517-520
Insights from the robust field of risk communication and perception have to date been almost totally absent from the policy debate regarding the relative risks and merits of Active SETI or Messaging to Extraterrestrial Intelligence (METI). For many years, the practice (or proposed practice) of Active SETI has generated a vigorous and sometimes heated policy debate within the scientific community. There have also been some negative reactions in the media toward the activities of those engaged in Active SETI. Risk communication is a scientific approach to communication regarding situations involving potentially sensitive or controversial situations in which there may be high public concern and low public trust. The discipline has found wide acceptance and utility in fields such as public health, industrial regulation and environmental protection. Insights from the scientific field of risk communication (such as omission bias, loss aversion, the availability heuristic, probability neglect, and the general human preference for voluntary over involuntary risks) may help those who have participated in either side of the debate over Active SETI to better understand why the debate has taken on this posture. Principles of risk communication and risk perception may also help those engaged in Active SETI to communicate more effectively with other scientists, the public, with the media, and with policy makers regarding their activities and to better understand and respond to concerns expressed regarding the activity.  相似文献   

3.
Search for ExtraTerrestrial Intelligence (SETI) is now more than half a century old and has provoked enough discussion on technical, philosophical, and popular level, much of it critical. Historically, the criticism of SETI has been strong enough to heavily influence the course of research, so that there is a significant interest in discerning the nuances and fine points of critical argumentation. In this paper, I outline the two major forms of SETI scepticism, “fundamentalist” and “instrumentalist,” which are often conflated in the published literature, both technical and popular. Precise delineation between these two types of scepticism is important for future research as a part of a wider taxonomic project, the build-up of SETI theory, as well as for smooth joining of SETI with the ongoing astrobiological revolution. Resolving the confusion in this respect is likely to lead to an improved atmosphere and heightened public image of future SETI searches and related activities.  相似文献   

4.
《Acta Astronautica》2014,93(2):534-537
The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.  相似文献   

5.
In the present paper (originally presented at the First IAA Symposium on Searching for Life Signatures hold at the UNESCO on 22–26 September 2008) I try to summarize the results of all my previous studies on active SETI and its possible dangers for us, also considering some new topics, in order to provide a possibly complete overview of the whole matter. First, I try to evaluate the possible risks of an indirect contact with aliens, from the social, cultural, and religious point of view; then, the possible risks related with receiving information about alien science and technology; finally, the risk that active SETI could increase the probability of a physical contact with hostile aliens. My conclusion is that active SETI is very unlikely to be dangerous for us, but, at present, such a possibility cannot be completely excluded. Surprisingly, it turns out that a very important point to be assessed in order to improve our evaluation of active SETI is the pace of our technological progress. Some suggestions about the policy that international community should adopt towards active SETI are also included.  相似文献   

6.
Gulkis S 《Acta Astronautica》1989,19(11):919-925
The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.  相似文献   

7.
We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an “intelligent message” content within these animals’ signals, perhaps not surprising given these species’ social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most “organized” of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.  相似文献   

8.
Many important SETI terms are either ambiguously defined or interpreted by different experts differently. Based on the author's experience with astronautical terminology (IAA multilingual space dictionary) a summary of the usual problems connected with an uniform definition of fundamental terms is attempted. In the second part several examples are quoted from the SETI literature—including the terms ETI, SETI and METI themselves, the definition of a habitable zone, of alien life, of an extraterrestrial artifact, of the Drake equation, of the Fermi-paradox, etc. In the third part of the paper a new task for the SETI social sciences community is raised, namely to collect “Lasting Universal Terms”; i.e. terms the meaning of which did not change since millennia, are independent on geographic position and also on the terrestrial environment and biology. Such terms might be preferably used in interstellar communication. All these questions are related to the manner how we might think about ETI and SETI in new ways. The paper tries to summarize the problems connected with exact SETI terminology and its potential implications for the future.  相似文献   

9.
The Search for Extraterrestrial Intelligence (SETI) typically presupposes contact with extraterrestrial civilizations much longer lived than humanity. Many have argued that given humanity's “youth,” the burden of transmitting should be placed on the extraterrestrial civilizations, which presumably possess more advanced technologies. These assumptions have contributed to the current emphasis on Passive SETI. Complementing this existing stress on Passive SETI with an additional commitment to Active SETI, in which humankind transmits messages to other civilizations, would have several advantages, including (1) addressing the reality that regardless of whether older civilizations should be transmitting, they may not be transmitting; (2) placing the burden of decoding and interpreting messages on advanced extraterrestrials, which may facilitate mutual comprehension; and (3) signaling a move toward an intergenerational model of science with a long-term vision for benefiting other civilizations as well as future generations of humans. Technological requirements for Active SETI are considered, and a case is made for Active SETI as a means for experimentally testing variants of the Zoo Hypothesis. Recommendations are provided for sustaining Passive and Active SETI and the communities that conduct these searches.  相似文献   

10.
The SETI community is becoming increasingly interested in extending its searches to include wideband signals, such as information-bearing beacons. However, prior to discovery of a target signal, a SETI receiver has no knowledge of the signal parameters (bandwidth, carrier frequency, modulation type, etc.) and so detection can be very challenging, especially at low signal-to-noise ratios. However, this paper shows by example that there exist signal classes and corresponding detection methods that permit straightforward discovery of wideband signals of unknown structure. The example given is a form of binary antipodal signalling that utilises spread-spectrum modulation, which offers benefits to the receiver in terms of immunity to noise/interference and ease of detection. The proposed detection method is a ‘symbol-wise’ autocorrelation process that takes advantage of the cyclostationarity property of modulated signals. Detection sensitivity is suboptimal in comparison with what is possible if the target signal structure is known. However, this deficit can be overcome by processing longer timespans of signal, providing scope for detection at extremely low signal-to-noise ratios. It is postulated that antipodal signalling represents an attractive option for interstellar beacons because it is both power efficient and there exists a simple complementary detection method not requiring explicit coordination between the transmitter and receiver. This in turn suggests there is a case for extending future SETI searches to include this class of signal.  相似文献   

11.
Tarter J 《Acta Astronautica》1989,19(11):907-912
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.  相似文献   

12.
Throughout the history of the Search for Extraterrestrial Intelligence (SETI), there has been widespread recognition of the profound societal implications of detecting intelligence beyond Earth. At the SETI Institute, interstellar message construction serves as the focus of a multidisciplinary attempt to prepare for the cultural impact of signal detection and the critical events that would follow. Interstellar message construction at the SETI Institute builds upon the recommendations of the 1991–1992 Workshops on the Cultural Aspects of SETI, while also exploring opportunities for multidisciplinary contributions on new topics. Through a series of international workshops in Toulouse, Paris, Zagreb, Washington, and Bremen, the SETI Institute and partner organizations have fostered broad-based discussion about some of the most important decisions that would follow detection of extraterrestrial intelligence, including “should we reply?” and if so, “what should we say, and how might we say it?”. Several of the themes addressed at these workshops will be highlighted, including the relationship between art and science in designing messages, the value of interactive messages, and the importance of better understanding the nature of language.  相似文献   

13.
Biraud F 《Acta Astronautica》1983,10(11):759-760
The Nancay (France) radiotelescope has been used in June, 1981, to search for artificial monochromatic signals from 102 nearby stars, without success. A different approach to SETI is also considered based on the properties of wide band signals. A detection procedure, through Karhunen-Loeve analysis, is suggested.  相似文献   

14.
Commentators on the social implications of detecting an extraterrestrial civilisation have stressed the need for community education and awareness during the SETI search, and for public sources of accurate, authoritative information if and when a signal is detected. Museums have a role in community education and are recognised by the community as authoritative sources of expert information. They are, therefore, well placed to be important conduits through which information on the progress of SETI programs and any signal detection can be channelled to the public. Via both exhibitions and in-house educational activities, museums are able to provide long-term community education and awareness programs and can respond quickly with detailed and accurate information in the event of a detection. This paper will consider the role of museums in educating the public about SETI. It will present suggestions for ways in which SETI researchers can develop mutually profitable relationships with museums, and also consider some of the reasons why museums might choose not to become involved with SETI, because of the wildly sensationalised and often mis-informed controversy which has surrounded it.  相似文献   

15.
With recently growing interest in the Active Search for Extraterrestrial Intelligence (SETI), in which humankind would send intentional signals to extraterrestrial civilizations, there have been increased concerns about appropriate policy, as well as the role of space law and ethics in guiding such activities. Implicit in these discussions are notions of responsibility and capability that affect judgments about whether humans or other civilizations should initiate transmissions. Existing protocols that guide SETI research address transmissions from Earth, but there is debate over whether these guidelines should inform de novo transmissions as well. Relevant responsibilities to address include (1) looking out for the interests of humankind as a whole, (2) being truthful in interstellar messages, and (3) benefiting extraterrestrial civilizations. Our capabilities as a species and a civilization affect how well we can fulfill responsibilities, as seen when we consider whether we will be able to reach consensus about message contents (and whether that would be desirable), and whether we have the capacity to decode messages from beings that rely on different sensory modalities. The interplay of these responsibilities and capabilities suggests that humankind should place increased emphasis on Active SETI.  相似文献   

16.
The SETI Permanent Study Group (abbreviated SETI PSG) of the International Academy of Astronautics (IAA), with web site: http://www.setileague.org/iaaseti/index.html, is one of the few international venues where, as of 2006, scientists with different backgrounds and from all over the world can meet and discuss recent advances in the scientific, technical and societal aspects of SETI. In particular, the Pe?ek Lecture that traditionally opens in October every year the SETI 1 Session of the International Astronautical Congress (IAC), is intended to describe the updated state-of-the-art in SETI and related fields with the accent on science and technology rather than on the societal consequences of a contact with ET. We have thus come to the conclusion that a Pe?ek Lecture devoted to the interplay between SETI and the rapidly evolving field of the Search for Extrasolar Planets (or Exoplanets) would be quite up-to-date, especially in view of the over 200 exoplanets rapidly discovered in the 11 years between 1995 and 2006. Moreover, besides SETI and Exoplanets, there is a third field of scientific investigation that, although not as mature as the former two fields in terms of experimental research, is striving ahead among many theoretical difficulties but might really change the course of human history when becoming reality: this is the theory (so far) of Interstellar Flight, that would one day enable us to travel across the vast interstellar distances initially by virtues of probes only, and later “in person”.The present Pe?ek Lecture is trying to compare the different grow rate and the (now small) overlap in between these three apparently “unrelated” fields. And even if we can hardly find any answer in these “dark ages” we live, let us at least raise the question: “When are SETI, Exoplanet Searches and Interstellar Flight going to merge in the future of Humankind?”.  相似文献   

17.
The nature of a SETI search makes observations uniquely vulnerable to radio frequency interference because the frequency of a possible ETI signal is unknown. Sensitive radio telescopes, sophisticated software and enhanced signal detection equipment are employed to detect faint signals in the 1–3 GHz frequency range. Frequency management at SETI occurs within a policy environment of the ITU spectrum allocation process. Increased demand by commercial satellite services for access to spectrum adjacent to bandwidth allocated to radio astronomy creates severe international and domestic pressures on SETI observations. Strategies for addressing the RFI problem at the international level will be discussed that include a contingency ITU allocation plan for exclusive use of a particular frequency range by SETI in the event a signal is detected. The lunar farside is, by international agreement, a radio quiet zone for use by radio astronomers. Protected from most human-generated emissions, a SETI radio telescope array on the lunar farside would provide reliable data with minimum interference.  相似文献   

18.
SETI observational programs conducted over the last two decades, and most of those planned for the near future, have concentrated on searching for signals at microwave frequencies. Considerations of signal-to-noise ratio at the receiving end indicate that this is the correct approach if the broadcasting society is not concerned with directionality and transmits into a fairly large solid angle. However, if that society desires to transmit only a highly directional beacon, then it is not now possible, given our lack of knowledge of advanced space technology, to predict reliably whether microwave or infrared wavelengths are to be preferred in an optimum search program. Given the realities of current terrestrial technology, either the centimeter or millimeter domain is to be preferred to the infrared, independent of considerations of directionality. In any event, there does not appear to be any cosmically unique (“magic”) frequency at which to conduct SETI.  相似文献   

19.
Short-pulse SETI     
While most optical SETI experiments are configured to detect nanosecond pulses, the majority of their counterpart radio searches integrate for seconds to minutes, looking for unchanging narrow-band carriers or slowly pulsed modulation. The former approach is suggested as an effective way to stand out against stellar photon noise, while the latter approach is dictated by the dispersive effects of the interstellar medium as well as the high visibility of narrow-band signal components.In this paper, we consider effective signal strategies for those that produce, rather than simply search for, optical and radio beacons—signals that are designed to elicit responses from technological civilizations. By considering the communication problem from the point of view of the transmitters, rather than the receivers, we deduce some likely signal characteristics for beacons, and concommitant new strategies for SETI.  相似文献   

20.
Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that “nothing makes sense in biology except in the light of evolution”. Here it will be argued that nothing in astrobiology makes sense except in the light of “Cosmic Convergent Evolution” (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this “fine-tuning” in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the “Selfish Biocosm Hypothesis” and the “Evo Devo Universe” as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号