首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that “nothing makes sense in biology except in the light of evolution”. Here it will be argued that nothing in astrobiology makes sense except in the light of “Cosmic Convergent Evolution” (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this “fine-tuning” in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the “Selfish Biocosm Hypothesis” and the “Evo Devo Universe” as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded.  相似文献   

2.
Over the past 30 years research into the existence of extraterrestrial life has focused on attempts to detect stable narrowband radio signals emitted in the microwave portion of the radio frequency (RF) spectrum. The SERENDIP SETI group is currently conducting search operations on the world’s largest radio telescope at the Arecibo Observatory in Puerto Rico.The third generation SERENDIP system, SERENDIP III, is a 4 million channel FFT-based spectrum analyzer with 0.6 Hz frequency resolution. In this paper, we will discuss the results of our recent 3.5 year sky survey. SERENDIP looked at 95% of the sky visible from Arecibo in the 424–436 MHz range, analyzed 1014 spectral bins, and logged information on over 2.5×108 signals.The fourth generation SERENDIP system expands on the SERENDIP III design. SERENDIP IV computes 2×1011 operations each second, providing spectral analysis on 160 million channels in 1.7 s. We will discuss the design and use of the SERENDIP IV system and future observing plans.  相似文献   

3.
F Drake 《Acta Astronautica》1999,44(2-4):113-115
Radio Telescopes for SETI searches are less demanding than general purpose astronomical radio telescopes. This provides an opportunity to exploit economical approaches in designing SETI systems. Radio Telescopes in low Earth orbit offer no discernible advantages to SETI; indeed, they probably would perform more poorly than a telescope in any other location. Telescopes in geosynchronous orbits would be sufficiently far from Earth to mitigate greatly the deleterious effect of human radio transmissions. Telescopes on the far side of the moon would be superb both from a radio interference standpoint, and from a civil engineering standpoint. Single-reflector telescopes as large as 50 kilometers in diameter could be constructed with conventional materials. However, their costs appear prohibitive. The asteroid belt and the outer solar system are unpromising places to place a large radio telescope. Perhaps the ultimate radio telescope would utilize the sun as a gravitational lens, focusing radiation on free-flying 10-meter class or possibly larger radio telescopes located at distances of the order of 1000 A.U. from the sun. Such a combination has an energy collecting area at 10 centimeters wavelength equivalent to that of a radio telescope about 11 kilometers in diameter, or of the order of 3000 Arecibo radio telescopes. Such a system could detect transmitters with EIRP of the order of a gigawatt at a distance of the order of the distance to the galactic center.  相似文献   

4.
SETI observational programs conducted over the last two decades, and most of those planned for the near future, have concentrated on searching for signals at microwave frequencies. Considerations of signal-to-noise ratio at the receiving end indicate that this is the correct approach if the broadcasting society is not concerned with directionality and transmits into a fairly large solid angle. However, if that society desires to transmit only a highly directional beacon, then it is not now possible, given our lack of knowledge of advanced space technology, to predict reliably whether microwave or infrared wavelengths are to be preferred in an optimum search program. Given the realities of current terrestrial technology, either the centimeter or millimeter domain is to be preferred to the infrared, independent of considerations of directionality. In any event, there does not appear to be any cosmically unique (“magic”) frequency at which to conduct SETI.  相似文献   

5.
The SETI community is becoming increasingly interested in extending its searches to include wideband signals, such as information-bearing beacons. However, prior to discovery of a target signal, a SETI receiver has no knowledge of the signal parameters (bandwidth, carrier frequency, modulation type, etc.) and so detection can be very challenging, especially at low signal-to-noise ratios. However, this paper shows by example that there exist signal classes and corresponding detection methods that permit straightforward discovery of wideband signals of unknown structure. The example given is a form of binary antipodal signalling that utilises spread-spectrum modulation, which offers benefits to the receiver in terms of immunity to noise/interference and ease of detection. The proposed detection method is a ‘symbol-wise’ autocorrelation process that takes advantage of the cyclostationarity property of modulated signals. Detection sensitivity is suboptimal in comparison with what is possible if the target signal structure is known. However, this deficit can be overcome by processing longer timespans of signal, providing scope for detection at extremely low signal-to-noise ratios. It is postulated that antipodal signalling represents an attractive option for interstellar beacons because it is both power efficient and there exists a simple complementary detection method not requiring explicit coordination between the transmitter and receiver. This in turn suggests there is a case for extending future SETI searches to include this class of signal.  相似文献   

6.
7.
8.
The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.  相似文献   

9.
10.
This paper attempts to apply a traditional risk and value analysis to the Search for Extraterrestrial Intelligence--SETI. In view of the difficulties of assessing the probability of success, a comparison is made between SETI and a previous search for extraterrestrial life, the biological component of Project Viking. Our application of simple Utility Theory, given some reasonable assumptions, suggests that SETI is at least as worthwhile as the biological experiment on Viking.  相似文献   

11.
《Acta Astronautica》2014,93(2):512-516
One of the most important reasons why unsuccessful results have been obtained so far by the SETI Project is due to the fact that no sure targets to aim at have been available up-to the present state of research. All-sky surveys, even if very accurate and complete, might result to be time-consuming. SETI needs at least one effective “viewfinder” in order that a true targeted research is carried out with a possible success. The best foundation to get this can be identified with the search for the evidence of extraterrestrial astro-engineering activity in form of the Dyson spheres predicted by theory. The existence of such stellar objects can be ascertained by finding the evidence of two main signatures in stars of solar spectral type: infrared excess and anomalous light curves due to transiting artificial objects. These are probably the most powerful viewfinders in order to allow SETI techniques for intelligent signal search to be aimed at more appropriate targets. This paper is not intended to be a research paper but rather a review paper whose goal is not to present calculations and/or operational research but rather to be a research proposal for a more focused research in SETI just using Dyson Spheres as crucial markers.  相似文献   

12.
The nature of a SETI search makes observations uniquely vulnerable to radio frequency interference because the frequency of a possible ETI signal is unknown. Sensitive radio telescopes, sophisticated software and enhanced signal detection equipment are employed to detect faint signals in the 1–3 GHz frequency range. Frequency management at SETI occurs within a policy environment of the ITU spectrum allocation process. Increased demand by commercial satellite services for access to spectrum adjacent to bandwidth allocated to radio astronomy creates severe international and domestic pressures on SETI observations. Strategies for addressing the RFI problem at the international level will be discussed that include a contingency ITU allocation plan for exclusive use of a particular frequency range by SETI in the event a signal is detected. The lunar farside is, by international agreement, a radio quiet zone for use by radio astronomers. Protected from most human-generated emissions, a SETI radio telescope array on the lunar farside would provide reliable data with minimum interference.  相似文献   

13.
Gulkis S 《Acta Astronautica》1989,19(11):919-925
The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.  相似文献   

14.
Although initially we will know virtually nothing about any society that our microwave search detects, in all likelihood their society will be far older than ours. It will have evolved mechanisms to ensure longevity. A pessimistic hypothesis would lead us to expect a powerful, aggressive and self-serving society that has vanquished all challengers. If this hypothesis were true, a response by us to their signal could be dangerous. An optimistic hypothesis, that it is the peaceful societies that survive, would lead us to expect a benign or even friendly civilization. If this second hypothesis were true, our response would gratify their scientific curiosity and perhaps lead to a useful exchange of information. Convergent evidence from the quantitative analyses of long-term historical trends and computer modeling support the optimistic hypothesis. Although not conclusive, this analysis suggests that revealing our presence in the Universe is a low risk activity.  相似文献   

15.
The Search for Extraterrestrial Intelligence (SETI) typically presupposes contact with extraterrestrial civilizations much longer lived than humanity. Many have argued that given humanity's “youth,” the burden of transmitting should be placed on the extraterrestrial civilizations, which presumably possess more advanced technologies. These assumptions have contributed to the current emphasis on Passive SETI. Complementing this existing stress on Passive SETI with an additional commitment to Active SETI, in which humankind transmits messages to other civilizations, would have several advantages, including (1) addressing the reality that regardless of whether older civilizations should be transmitting, they may not be transmitting; (2) placing the burden of decoding and interpreting messages on advanced extraterrestrials, which may facilitate mutual comprehension; and (3) signaling a move toward an intergenerational model of science with a long-term vision for benefiting other civilizations as well as future generations of humans. Technological requirements for Active SETI are considered, and a case is made for Active SETI as a means for experimentally testing variants of the Zoo Hypothesis. Recommendations are provided for sustaining Passive and Active SETI and the communities that conduct these searches.  相似文献   

16.
Since the goals of SETI concern eventually all humanity, public opinion about SETI is crucially important. Formation of public opinion can be modeled with the aid of stochastic equations. This method, developed by specialists in statistical physics and poorly known by sociologists and the SETI community, gives new insight into the old problem of how to influence public opinion. A popular introduction to this method and some suggestions of how to apply it to SETI will be given.  相似文献   

17.
David R. DeBoer   《Acta Astronautica》2006,59(12):1153-1159
The Allen telescope array (ATA) currently under construction affords the possibility of a dedicated and highly efficient SETI program that may be done commensally with other radio astronomy programs. This symbiosis is important in order to maintain and sustain the long-term effort that may be required in order to achieve success as a positive or null result. The technology that is being exploited is the construction of many small elements that allow large fields-of-view at high sensitivity, the use of ultra-wideband front-ends, and the use of flexible digital “intermediate frequency (IF)” systems. The project is under construction in phases, with the first 32 antennas expected to be functional in the fall of 2004, the next 173 dishes operational early 2006, with plans for 350 antennas total within this decade.  相似文献   

18.
Cirković MM 《Astrobiology》2004,4(2):225-231
We critically investigate some evolutionary aspects of the famous Drake equation, which is usually presented as the central guide for research on extraterrestrial intelligence. It is shown that the Drake equation tacitly relies on unverified assumptions on both the physicochemical history of our galaxy and the properties of advanced intelligent communities. In this manner, the conventional approach fails to take into account various evolutionary processes forming prerequisites for quantification of the Drake equation parameters. The importance of recent results of Lineweaver and collaborators on chemical build-up of inhabitable planets for the search for extraterrestrial intelligence is emphasized. Two important evolutionary effects are briefly discussed, and the resolution of the difficulties within the context of the phase-transition astrobiological models is sketched.  相似文献   

19.
The central difficulties confronting us at present in exobiology are the problems of the physical forces which sustain three-dimensional organisms, i.e., how one dimensional systems with only nearest interaction and two dimensional ones with its regular vibrations results in an integrated three-dimensional functionality. For example, a human lung has a dimensionality of 2.9 and thus should be measured in m2.9. According to thermodynamics, the first life-like system should have a small number of degrees of freedom, so how can evolution, via cycles of matter, lead to intelligence and theoretical knowledge? Or, more generally, what mechanisms constrain and drive this evolution? We are now on the brink of reaching an understanding below the photon level, into the domain where quantum events implode to the geometric phase which maintains the history of a quantum object. Even if this would exclude point to point communication, it could make it possible to manipulate the molecular level from below, in the physical scale, and result in a new era of geometricised engineering. As such, it would have a significant impact on space exploration and exobiology.  相似文献   

20.
Lick Observatory's Optical SETI (search for extraterrestrial intelligence) program has been in regular operation for 4.5 years. We have observed 4,605 stars of spectral types F-M within 200 light-years of Earth. Occasionally, we have appended objects of special interest, such as stars with known planetary systems. We have observed 14 candidate signals ("triple coincidences"), all but one of which are explained by transient local difficulties. Additional observations of the remaining candidate have failed to confirm arriving pulse events. We now plan to proceed in a more economical manner by operating in an unattended drift scan mode. Between operational and equipment modifications, efficiency will more than double.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号