首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提高加速度计组件的标定精度是实现高精度导航、高精度测姿的重要途径.针对加速度计组件通过线性误差模型标定后难以达到微g级精度的情况,建立了包含二次项误差和振摆误差在内的加速度计组件误差模型,并提出了一种基于状态变换Kalman滤波与滤波增益约束的系统级标定算法.该算法借鉴Schmidt-Kalman滤波器与可观测性约束Kalman滤波器原理,可减小滤波状态协方差矩阵计算误差和滤波增益计算误差,从而提高弱可观误差状态的估计精度.与传统系统级标定算法的对比实验表明,所提出的新算法能够更加精确估计出包含二次项误差与振摆误差在内的加速计组件的各项误差,新算法使在大水平姿态倾角下的重力模值测量残差的均方差从线性误差模型的24.12μg、线性/二次项误差模型的13.38μg减少到6.71μg.4500s大水平姿态变化下的纯惯导实验结果表明:与仅用线性误差模型的系统级标定结果相比,系统级标定新算法使惯导系统的东向、北向导航最大位置误差分别从192.40m、96.72m减小到74.64m、65.44m.所提出的系统级标定新算法具备更好的标定精度,从而使得导航精度得到提高.  相似文献   

2.
针对单晶金刚石刀具刃口轮廓精度的精密检测方法进行研究,首次利用形位误差仪、通过测量刀具后刀面精度的方法来反映刀具刃口轮廓精度,并基于改进后的最小二乘圆拟合方法完成刀具精度评价.通过实验,实现了形状精度在0.05μm尺度的测量,验证了本方法的有效性.  相似文献   

3.
PSD是一种新型的半导体位置敏感探测器。文中叙述了利用PSD的测量原理和测量方法,给出了数学模型和误差模型,分析了测量精度。利用PSD探测器可测量弹丸姿态和转速,可测量末敏子弹的稳态扫描角和转速,还可测量无人机和高炮综合体的车体姿态。PSD是继太阳方位传感器后的又一种测弹丸恣态的新方法。  相似文献   

4.
以DSP(TMS320F28335)芯片为核心,采用高精度A/D对传感器的输出信号进行实时采集,结合现代信号处理算法,精确计算出相位差和频率,利用DSP快速运算功能,算出被测流体的密度和质量流量等信息,并在上位机上采用delphi语言开发用户界面,解决了大流量、高压力下信号的实时采集和流量变化幅度较大等难题。实验结果表明:该系统有效提高了系统的稳定性和测量准确度,大大缩短了系统的响应时间。  相似文献   

5.
针对利用OFDM信号进行定位时信号非连续性问题,提出一种粗检测和精细检测结合的测距方法,将距离测量转换为不同尺度的时延样点,采用时域粗检测快速估算接收OFDM信号的最大相关峰值,然后对传输时延进行频域精细测量,提升了小数倍采样周期时延测量的精度。在此基础上,分析了OFDM信号的定位性能,仿真结果表明,当OFDM信号在信噪比-11dB的情况下测距误差由3m左右(子载波数512)降至1m(子载波数4096)。  相似文献   

6.
提出了一种旁置式的大型齿轮测量装置,分析了影响该装置测量精度的主要误差来源及其特性,给出了一种处理多因素耦合影响的灰色动态预报方法.首先,基于测量装置特性,对影响齿形误差测量精度的误差源进行分析和标定,计算出各误差源的灵敏度系数;然后对测得的有限误差数据进行再抽样及灰色生成,分别计算出在每次测量中各影响因素对测量结果的作用大小,之后按照误差合成方法生成误差源耦合作用结果;最后,通过在测量结果中去除耦合作用进而提高大型齿轮齿形误差测量精度.与测量精度为0.5μm的三坐标测量机进行对比测量,结果表明所提出测量装置能满足3级精度以上的大型齿轮齿形误差检测需求.  相似文献   

7.
赵耀军 《航空学报》1993,14(2):96-100
所讨论的激光测量装置,可以同时测量~个移动轴的5个移动误差分量,即两个直线度分量和3个角位移分量。该装置测量线性误差和角位移误差的精度可分别达到1.5μm和0.5”以内。  相似文献   

8.
基于DSP和CPLD的高精度频率测量系统设计   总被引:2,自引:0,他引:2  
介绍了以CPLD(Complex Programmable Logic Device)为核心处理芯片的频率测量系统,整个系统由信号调理电路、CPLD和DSP等构成,在CPLD中设计等精度测频模块,再由DSP进行数字滤波并将采集值送至双口RAM以供上位机读取。采用CPLD配合DSP的设计方案,具有速度高、精度高的优点,且易于升级和扩展采集能力,具有一定的工程应用价值。  相似文献   

9.
总体最小二乘法在NGMIMU静态解耦中的应用   总被引:4,自引:1,他引:3  
无陀螺惯导系统的线性耦合是一种严重影响测量精度的系统误差。根据无陀螺惯导系统的耦合特性和总体最小二乘法 (TLS)的性质提出了一种全新的线性解耦算法 ,该算法在解算耦合系数时同时考虑了加速度计的输出误差和标定信号的输入误差 ,得到耦合系数的TLS解对输入值和输出值同时具有范数最小 ,然后用求得的耦合系数对加速度计输出进行重构 ,从而实现解耦。仿真结果表明经该算法解耦后的角速度测量值解耦误差率在 8%以下 ,解耦效果较好 ,验证了该算法的有效性。  相似文献   

10.
由于中国深空干涉测量系统无法采用短时差分标校,使得实时测量精度较差,误差来源主要包括对流层延迟模型误差和钟差模型误差。为了提高实时测量精度,基于最大值最小准则,对对流层天顶延迟进行精确修正;引入邻近估计与线性回归模型,实现了高精度的钟差非线性预报。经任务数据验证,对流层延迟精修正模型预报值与实测值的差异最大值优于0.33m(仰角≥10°);相对EGNOS和"EGNOS+GMF"模型,该误差减小约1个数量级;相对线性预报,非线性预报误差减小约半个数量级。可为我国后续深空探测任务提供高精度对流层延迟和钟差建模及预报。  相似文献   

11.
针对传统惯性导航系统定位误差随时间积累的问题,提出了一种基于无线信号辅助定位的室内无死角定位算法。该算法首先利用加速度计、陀螺仪、磁力计和气压计等传感器数据实现三维定位,然后利用无线信号对惯导定位中的位置偏差进行实时校正,再通过航向最优估计算法对航向误差进行修正,在位置和航向上增强惯导系统的实用性。利用实验室自主研发的微惯性测量单元固定在腰部脊椎位置进行实验验证,结果显示基于无线信号辅助的室内无死角定位算法精度达到1%以内,与纯惯导技术相比,能够提供更持久和准确的三维位置信息。  相似文献   

12.
用于SAR运动补偿的DGPS/SINS组合系统研究   总被引:11,自引:1,他引:11  
曹福祥  保铮  袁建平  郑谔 《航空学报》2001,22(2):121-124
使用考虑位置误差相关项的伪距率观测模型 ,研究了用于合成孔径雷达运动补偿的差分 GPS/ SINS伪距率组合系统。结果表明 ,组合系统的长期位置精度能达到 1 m左右。 GPS数据更新率低于 INS,在 GPS测量时间间隔内 ,组合系统的性能仅由 INS决定。虽然 INS误差随时间积累 ,在 GPS数据更新率为 1 s的情况下 ,即使采用中等精度的惯性仪表 ,其相对位置精度为厘米级 (这里相对位置精度指组合系统在 GPS测量时间间隔内位置误差的变化范围)。  相似文献   

13.
高速数据采集和分析系统研究   总被引:2,自引:0,他引:2  
为了在地面实验中监测航空发动机的振动情况和进行故障诊断, 研制了高速数据采集系统、信号处理系统以及基于模糊聚类方法上的故障诊断系统。在数据采集系统中采用并行A/D结构以提高采集速度;研制高性能的数字倍频电路以准确实现整周期采样。利用软、硬件结合的方法对测试结果进行补偿, 提高了相位精度。用标准信号和现场试验信号进行考核, 结果表明该系统能很好满足测量要求。   相似文献   

14.
研究了光笔系统的自标定原理及算法,建立了自标定数学模型,并进行大量的计算机仿真,确定了求解系统自标定最小二乘问题的有效算法。并通过计算机仿真计算分析了光笔上点光源的分布位置对光笔系统测量精度的影响。  相似文献   

15.
作为导航领域常用的组合导航方式,全球导航卫星系统(GNSS)/惯性导航系统(INS)组合导航在GNSS信号失锁后,由于惯性测量单元(IMU)误差随时间迅速积累,其定位结果会偏离载体真实位置,导航精度下降.针对此问题,提出了一种长短期记忆网络(LSTM)辅助的算法,称之为深度卡尔曼滤波(DKF)算法.DKF算法的核心思想是使用LSTM训练IMU误差模型,然后通过训练出的模型预测IMU误差,最后将预测的IMU误差代入IMU数据以校正导航结果.仿真结果表明:在200s测试数据上,DKF算法将误差从1.1537m/s降低到0.3746m/s.与平均预测、卡尔曼预测和最小二乘估计等方法相比,DKF算法的误差最小,具有更优越的导航性能.  相似文献   

16.
基于DSP的全姿态挠性陀螺定北仪的原理与实现   总被引:1,自引:0,他引:1  
本文介绍一种全姿态定北装置,它以挠性陀螺仪和加速度计为测量元件,利用正切法对轴测速定北和重力加速度信息,进行全姿态方位角计算。为了提高系统的运算精度和速度,采用浮点片TMS320C32DSP芯进行计算和控制,以快速自动准确测出真北方位角,文中着重讨论基于DSP的挠性陀螺定北仪的原理,信号处理,误差分析。  相似文献   

17.
在仅使用单点位置、速度信息计算轨道的奈件下,针对轨道半长轴、远地点高度的精度问题,在轨道面内,应用活力公式和二体运动学理论推导得出了轨道计算精度与弹道测量精度间映射关系的解析表达式,并采用数值分析方法给出了不同的位置、速度误差与半长轴、远地点高度最大误差之间的数值关系.仿真结果表明,对于位置误差和速度误差大小分别为100 m和1 m/s的算例,半长轴最大误差和远地点高度最大误差分别约为2 km和4 km.基于此方法,可以将弹道误差传递至轨道参数误差,进一步分析故障误判和漏判概率;也可根据轨道参数精度要求反算弹道测量精度要求,以作为地面测量系统建设的技术依据.  相似文献   

18.
介绍了一种可进行动态微位移测量的激光微位移测量系统。该系统以多普勒效应为理论基础,以He-Ne激光器为光源,配置了判向变频系统、CCD视频信号的高速动态采集系统、微机处理系统及干涉图像处理软件包等,较传统测量方法其精度、误差、灵敏度及稳定度都有较大提高,并实现了微位移的全自动测量。  相似文献   

19.
鲍欢  杨明绥  马威 《航空动力学报》2019,34(8):1708-1716
对旋转声源定位中3种常见阵列安装偏差即角度偏差、x轴向偏移偏差、z轴向偏移偏差导致的定位误差进行了详细研究。结果表明:当角度偏差在-10°~10°范围内,声源定位位置误差随角度偏差呈近似线性变化,最大定位位置误差为0.089 m,定位强度误差呈随机变化,其中最小定位强度误差为0.97 dB,最大为4.69 dB;当x轴向偏移偏差在-0.1~0.1 m范围内,声源定位位置误差随x轴向偏移偏差呈近似线性变化,最大定位位置误差为0.098 m,定位强度误差呈随机变化,其中最小定位强度误差为0.91 dB,最大为4.94 dB;当z轴向偏移偏差在-0.1~0.1 m范围内,最大定位位置误差为0.01 m,正偏移偏差引起的定位强度误差总体小于负偏移偏差,其中最小定位强度误差为0.81 dB,最大为4.51 dB。研究结果可为麦克风阵列在实际应用中控制测量误差提供指导。   相似文献   

20.
利用BRT(双边距离转发)系统对地球同步卫星进行测轨是一种传统的方法,在布站基线数千公里,测量精度3-5m的前提下,卫星的空间位置精度可达100m以内。如果由于地理条件的限制,不利于长基线布站,可考虑采用一种适用于短基线(几十公里)布站的CEI(实连站干涉)高精度测量系统。分析计算表明,要达到BRT同样的卫星空间位置测定轨精度,CEI需要10cm级的距离差测量精度(相当于μmd量级的测角精度),而且需要优于1ns的主副站时钟同步精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号