首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
空间机器人捕获漂浮目标的抓取控制   总被引:3,自引:1,他引:3  
魏承  赵阳  田浩 《航空学报》2010,31(3):632-637
提出了动态抓取域用于空间机器人捕获漂浮目标的抓取控制。空间机器人捕获漂浮目标时,由于机械臂与基体的动力学耦合、抓取时的碰撞激振等非线性特性使得抓取控制变得复杂而重要。首先建立了空间机器人及漂浮目标的动力学模型,而后引入了末端装置抓取目标时的碰撞模型,并提出了"动态抓取域"用于机械臂抓取目标时的控制,同时应用关节主动阻尼控制,以减小抓取碰撞激振对空间机器人冲击的影响。结果表明:在相同抓取时间下,加速抓取明显优于匀速抓取,碰撞力振幅减小至匀速抓取时的20%,对空间机器人的激振冲击明显消除,仅在抓取结束前有小幅激振。这对空间机器人的抓取控制有着重要的理论价值及工程实际意义。  相似文献   

2.
空间机械臂技术是维护空间站、执行指定任务、保障航天员出舱作业的安全等必不可少的关键技术。视觉测量技术则是保证空间机械臂顺利完成空间遥操作任务的前提。基于此前提,首先对空间机械臂视觉测量技术进行了概述,并分别对手眼关系标定、标志器识别以及相对三维位姿测量等关键技术进行了阐述;然后,以加拿大机械臂为例提出了一种基于边缘特征的标志器识别算法,给出了具体的识别流程,并采用一种基于非迭代的相对位姿测量算法实现了位姿求解;最后,针对标志器识别算法和位姿测量算法给出了基于仿真图像的实验结果和机械臂原理样机集成实验结果。最终实验结果表明:提出的空间机械臂视觉测量方法合理可行,满足预期的技术指标要求,具有较强的工程应用价值。  相似文献   

3.
冗余机械臂作为一种复杂的机电系统,其精确传递函数和动力学模型难以建立,为进行精确轨迹跟踪及动力学分析造成障碍。为代替实际的物理样机进行产品的性能测试,缩短物理样机的开发周期,提高设计质量和效率,利用Matlab与ADAMS对机械臂搬运器件作业进行轨迹跟踪联合仿真研究。仿真结果表明,所设计机械臂具有良好的轨迹跟踪能力;在实现轨迹精确跟踪的同时,联合仿真算法得到的轨迹具有更好的加速度及力矩控制效果,提高了机械臂搬运作业的运动平滑性,所得数据可供工程应用。  相似文献   

4.
冗余机械臂作为一种复杂的机电系统,其精确传递函数和动力学模型难以建立,为进行精确轨迹跟踪及动力学分析造成障碍。为代替实际的物理样机进行产品的性能测试,缩短物理样机的开发周期,提高设计质量和效率,利用Matlab与ADAMS对机械臂搬运器件作业进行轨迹跟踪联合仿真研究。仿真结果表明,所设计机械臂具有良好的轨迹跟踪能力;在实现轨迹精确跟踪的同时,联合仿真算法得到的轨迹具有更好的加速度及力矩控制效果,提高了机械臂搬运作业的运动平滑性,所得数据可供工程应用。  相似文献   

5.
针对月面车载机械臂存在的鲁棒性和空间运动轨迹较差的问题,提出了月面车载机械臂的无标定视觉伺服控制方法。对无标定视觉伺服控制系统的控制原理和控制方法进行了分析,提出了双目双轴平行视觉配置方法,选取图像特征空间的点特征和线特征设计控制器,并基于卡尔曼滤波算法实时在线估计机械臂的手眼映射关系。通过仿真试验与基于六轴机械臂无标定视觉伺服平台的地面空间定位模拟实验,验证了该方法的有效性。  相似文献   

6.
针对机械臂这类非线性的不确定性系统,基于迭代学习控制与滑模控制策略,提出了一种有效的迭代滑模控制方法。该控制方法通过将滑模控制律引入到迭代学习控制中,并运用Lyapunov理论对控制律进行证明,从而确保系统的稳定性。基于拉格朗日力学法建立动力学模型,得到相对简化的n关节机械臂模型。以一个二关节机械臂为例,通过MATLAB仿真验证所提控制策略可有效提高关节的跟踪速度与跟踪精度,并且在一定程度上可减缓传统滑模控制的抖振现象,与传统迭代学习控制相比,系统具有鲁棒性。物理试验验证了所提控制策略的有效性。  相似文献   

7.
为了解决由于视觉传感器视角单一、光线条件复杂导致的空间机械臂作业中相似目标识别较差的问题,提出一种基于CNN-GRU的视触融合目标识别系统.系统由机械臂、灵巧手和视觉传感器构成,实现了对目标物视觉和触觉信息的自主采样,并通过CNN-GRU网络提取视觉信息的空间特征和触觉信息的时序特征,有效利用多模态信息,提高目标识别的...  相似文献   

8.
包含末端执行器设计及柔顺控制方法的在轨柔顺抓捕技术是空间机械臂进行空间探索与实验的基础。基于DELTA型并联机械臂,拓展设计了针对非合作目标抓捕的空间机械臂串并联混合型末端执行器及其基于主动柔顺控制的位置-力阻抗控制器。利用ADAMS与MATLAB对末端执行器系统进行了控制仿真,分析了影响柔顺抓捕控制的关键参数。结果证明设计的末端执行器可以有效地对非合作目标进行抓捕,且抓捕具有一定的柔顺特性;表明影响柔顺抓捕控制的关键环境阻抗参数为环境刚度。  相似文献   

9.
近年来,基于可见光图像的目标识别在无人车感知领域得到了广泛应用.然而,可见光图像目标识别无法应用于弱光和黑暗环境.针对于此,提出了一种基于红外视觉/激光雷达融合的目标识别与定位算法.首先,通过基于颜色迁移的数据增强训练方法,提高了红外目标识别算法的泛化性能.继而,提出了一种基于激光雷达修正的单目深度估计方法,通过视觉图...  相似文献   

10.
空间机器人捕获漂浮目标时,机械臂手部与目标之间不可避免地发生频繁的接触碰撞,严重影响空间机器人本体的位姿与抓取安全。本文引入了"动态抓取域"描述机械臂抓取目标时的碰撞过程,建立了抓取域控制方程,并分析了抓取控制参数及基体和目标质量等对抓取过程的影响,结合生活经验发现当速度控制参数与调配增益系数乘积接近并小于最小抓取速度时,能够极大的减小抓取过程中的碰撞冲击,进而给出了理想的抓取策略。结果表明:在相同抓取时间下,应用抓取策略明显优于加速抓取,碰撞力幅值降低到加速抓取时的20%左右,且姿态控制力矩仅为加速抓取的15%,对空间机器人的激振冲击明显消除。抓取策略的研究对空间机器人的捕获抓取有着重要的理论价值及工程实际意义。  相似文献   

11.
基于多智能体强化学习的空间机械臂轨迹规划   总被引:1,自引:0,他引:1  
赵毓  管公顺  郭继峰  于晓强  颜鹏 《航空学报》2021,42(1):524151-524151
针对某型六自由度(DOF)空间漂浮机械臂对运动目标捕捉场景,开展了基于深度强化学习的在线轨迹规划方法研究。首先给出了机械臂DH (Denavit-Hartenberg)模型,考虑组合体力学耦合特性建立了多刚体运动学和动力学模型。然后提出了一种改进深度确定性策略梯度算法,以各关节为决策智能体建立了多智能体自学习系统。而后建立了"线下集中学习,线上分布执行"的空间机械臂对匀速直线运动目标捕捉训练系统,构建以目标相对距离和总操作时间为参数的奖励函数。最后通过数学仿真验证,实现了机械臂对各向匀速运动目标的快速捕捉,平均完成耗时5.4 s。与传统基于随机采样的规划算法对比,本文提出的自主决策运动规划方法求解速度和鲁棒性更优。  相似文献   

12.
针对局部自主遥操作过程中识别目标准确率低的问题,提出了一种基于改进快速区域卷积神经网络的抓取构型识别方法,通过对其区域生成网络中锚点尺度、前景特征区域、候选框的线性回归和分类网络分别进行改进,以提高抓取构型识别的准确率。首先将抓取构型参数化,然后在目标区域中利用锚点法对抓取构型参数进行识别,结合视觉传感器采集到的深度信息确定目标高度,并通过线性回归方法对抓取区域进行修正。通过搭建机器人试验平台,利用Cornell Grasp Dataset进行训练与测试进行验证。试验结果表明,提出的方法在简单网络识别准确率为96.4%,并成功实现机器人对目标的抓取。  相似文献   

13.
陈奥  解永春  王勇  李林峰 《航空学报》2021,42(11):525045-525045
在轨加注是一种典型的在轨服务操作,它对于降低空间运输成本和任务风险起着重要的作用,视觉感知系统可以感知操作任务周围环境并提供给控制系统。目前在轨加注依赖于人,在人员监控下完成或通过遥操作完成,缺乏自主性。本文围绕未来高自主性的基于深度强化学习的在轨加注方法,对基于深度学习的视觉感知方法展开了研究,针对基于深度学习的方法对相似实例的检测存在精确率低、对光照变化敏感等缺点,提出了基于深度图推理的卫星背板部件检测方法。提出的方法可以有效地检测复杂形状的目标,不依赖于手工设计的特征;提高了复杂光照环境下部件的检测正确率;可以有效区分外形相似的不同部件;其有效性在数学仿真和物理仿真中均得到了验证。  相似文献   

14.
吴昊  孙晟昕  魏承  张海博  赵阳 《航空学报》2019,40(5):422587-422587
设计了一种柔性减速刷消旋机构,将其安装于七自由度机械臂的末端,通过与翻滚目标帆板之间的接触碰撞进行消旋。利用绝对节点坐标法推导了柔性减速刷的动力学模型,并对其接触碰撞进行分析。针对自由漂浮空间机器人动力学建模和基座姿态的控制进行了研究,采用基于计算力矩法的滑模控制策略,对末端参数不确定的七自由度机械臂进行控制。滑模控制具有快速响应、对参数变化及扰动不灵敏等特点,确保了系统的全局鲁棒性和稳定性。有利于节省消旋时间,提高消旋效率。通过PD控制和滑模控制消旋仿真验证,该消旋策略能够成功消除初始旋转速度,消旋程度达90%以上,具有可行性与有效性。  相似文献   

15.
贾庆轩  符颖卓  陈钢  徐文倩 《航空学报》2021,42(1):523728-523728
为了实时检测空间机械臂关节故障的发生并获得有效的故障信息,提出一种基于状态观测器的关节故障诊断方法。通过结合滑模变结构控制理论设计滑模状态观测器,获得机械臂各运行状态的残差信息,并将其与设定的阈值比较,实现关节故障的检测。进而引入不同的故障模式,构建故障数据库,将实际关节故障所导致的机械臂故障残差信息与故障数据库对比,完成故障发生位置及其故障程度的识别。所提诊断方法考虑了空间机械臂系统内部强耦合特性,能够及时检测故障的发生并获取有效的故障信息。最后以7自由度空间机械臂为对象开展数值仿真研究,验证了所提关节故障诊断方法的有效性。  相似文献   

16.
针对无可靠陆基/舰基回收平台情况下小型固定翼无人机(UAV)远程作战空基回收难题,提出一种伸缩套臂抓取式空基回收建模与对接控制方法。首先,受硬式空中加油技术启发,提出一种伸缩套臂式抓取无人机空基回收方法,并采用转动惯量质量投影法及拉格朗日方程法构建伸缩套臂仿射非线性模型;继而,分析了母机尾涡及常值风扰动综合作用下伸缩套臂的气动特性;其次,针对伸缩套臂三通道中扰流关联项和不可测瞬变模型扰动构成的系统集总扰动,分别设计了可在有限时间内收敛的非奇异快速终端滑模干扰观测器对其进行准确估计,并在控制器设计中予以前馈补偿;然后,为实现多重扰流下伸缩套臂快速精准空中对接,提出一种基于干扰观测的非奇异快速终端滑模对接控制方法,并分析了闭环系统稳定性。最后,通过仿真验证表明,所提出的方法能够在多重气流扰动下实现伸缩套臂的快速、精准空中对接控制,同时兼备较好的抗干扰性能。  相似文献   

17.
贾庆轩  段嘉琪  陈钢 《航空学报》2021,42(6):424063-424063
针对在轨装配过程中机器人"手眼"关系无法进行有效标定及机器人系统和被操作物惯性参数不定的情况,在传统的无标定视觉伺服基础上设计了深度估计器,基于机器人和图像运动的测量数据在线估计目标特征的深度值,并在机器人关节控制环中设计滑模控制器实时控制机器人关节运动,根据反馈图像信息纠正系统误差完成对准跟踪,通过仿真验证了方法的有效性。所提的无标定视觉伺服对准方法使机器人在装配过程中免去了复杂的"手眼"关系的标定程序,克服了机器人系统及被操作物惯性参数不确定性给装配精度造成的影响,提高了"手眼协调"的鲁棒性,保证机器人能够在复杂的太空环境下完成在轨装配任务。  相似文献   

18.
在航空航天、汽车等领域中,各类复杂工件结构复杂、纹理弱且混叠堆放,在智能制造过程中存在快速、高精度测量和识别难题。针对上述问题,建立了一种面向工业机器人的高精度三维无序抓取系统。基于面结构光三维测量技术,构建大场景固定基座的三维视觉测量装备,获取大型复杂零件的三维点云数据。建立零件点云模板,设置抓取点位置,利用点云配准技术识别零件并估计当前位姿。提出了一种手眼标定优化策略,实现了对工业机器人的精确引导,完成任意位姿零件的抓取,按要求装配于指定位置。实验结果表明,所设计的无序抓取系统平移误差为0.413mm,角度误差为0.123°,可以快速有效地对散乱堆叠零件进行高精度识别与定位,引导工业机器人准确抓取与放置,该系统可以在航空航天、汽车等领域的工业生产线上进行示范应用。  相似文献   

19.
 GPS受他国控制和易受干扰对基于该导航系统的无人飞行器导航和着陆具有潜在危险,为了使其安全自动着陆,提出通过在着陆跑道(广场或公路)上预设具有受控发射红外光的地面合作目标,实现无人飞行器的视觉全天候自动精确着陆新技术。首先研究得到切实可行的工作过程;然后研制了合作目标,通过理论分析和实验得出,无论能见度高低,8~12 μm中远红外视觉系统探测到的合作目标图像质量远优于可见光视觉系统,研究得到合作目标和背景的温差在170~200 ℃时,成像效果最好。在识别研究中发现,基于传统的不变矩算法对合作目标的识别可靠性稍差,为了进一步准确地识别合作目标,又提出了基于方向链码的合作目标识别算法,该方法的耗时为不变距的96%,但是识别的可靠性比前者有显著提高。  相似文献   

20.
基于碰撞检测的自适应阻抗控制机械臂系统(英文)   总被引:2,自引:0,他引:2  
针对柔性关节机械臂,本文阐述了机械臂能够像人手一样安全操作的方法。3种方法相结合,以便机械臂能够柔顺的接触操作对象并控制接触力在预设定范围内。首先,提出采用虚拟分解法的笛卡尔阻抗控制用来实现机械臂在笛卡尔空间的柔顺控制。其次,引入自适应关节动态补偿器使得机械臂能够实施更为精确的控制。最后,设计了基于笛卡尔力反馈的实时路径规划,从而使机械臂能够检测碰撞并控制接触力。基于碰撞检测的自适应阻抗控制器能够简化其在机械臂上的实施,保持机械臂对环境的友好操作,并且严格满足系统的全局稳定性。实验在4自由度的卫星在轨自维护机械臂平台得以验证。碰撞检测实验和轨迹跟踪实验结果证明了所提出方法的有效性和可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号