首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Square Kilometre Array (SKA) will be the largest radio telescope ever built, aiming to provide collecting area larger than 1?km2. The SKA will have two independent instruments, SKA-LOW comprising of dipoles organized as aperture arrays in Australia and SKA-MID comprising of dishes in South Africa. Currently the phase-1 of SKA, referred to as SKA1, is in its late design stage and construction is expected to start in 2020. Both SKA1-LOW (frequency range of 50–350?MHz) and SKA1-MID Bands 1, 2, and 5 (frequency ranges of 350–1050, 950–1760, and 4600–15,300?MHz, respectively) are important for solar observations. In this paper we present SKA’s unique capabilities in terms of spatial, spectral, and temporal resolution, as well as sensitivity and show that they have the potential to provide major new insights in solar physics topics of capital importance including (i) the structure and evolution of the solar corona, (ii) coronal heating, (iii) solar flare dynamics including particle acceleration and transport, (iv) the dynamics and structure of coronal mass ejections, and (v) the solar aspects of space weather. Observations of the Sun jointly with the new generation of ground-based and space-borne instruments promise unprecedented discoveries.  相似文献   

2.
In this paper, the phase asynchrony between coronal index and sunspot numbers is investigated. It is found that, (1) the sunspot numbers begin one month earlier than coronal index, which should mathematically lead to phase asynchrony between them but with a slight effect; (2) the 11-year Schwabe cycle is the only one period with statistical significance for coronal index and sunspot numbers, and the difference between the length of the Schwabe cycle of them should also lead to phase asynchrony between them; (3) although coronal index and sunspot numbers are coherent in low-frequency components corresponding to the 11-year Schwabe cycle, they are asynchronous in phase in high-frequency components; (4) their different definitions and physical meanings may be a major reason why there is a phase asynchrony between them.  相似文献   

3.
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.  相似文献   

4.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   

5.
6.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

7.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

8.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

9.
The two XUV–EUV spectrometers on SOHO have collected a large amount of data in the 6000–106 K solar plasma temperature range. These data have allowed us to greatly enhance our knowledge of the processes acting in the solar atmosphere, from the chromosphere to the corona. Some results on the quiet Sun structure (network, quiet Sun versus coronal hole), on the dynamics (velocities, waves, transient events), and the main characteristics of the quiet Sun atmosphere are presented and discussed.  相似文献   

10.
Jets, whatever small (e.g. spicules) or large (e.g. macrospicules) their size, may play a key role in momentum and energy transport from photosphere to chromosphere and at least to the low corona. Here, we investigate the properties of abundant, large-scale dynamic jets observable in the solar atmosphere: the macrospicules (MS). These jets are observationally more distinct phenomena than their little, and perhaps more ubiquitous, cousins, the spicules. Investigation of long-term variation of the properties of macrospicules may help to a better understanding of their underlying physics of generation and role in coronal heating. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory, a new dataset, with several hundreds of macrospicules, was constructed encompassing a period of observations over six years. Here, we analyse the measured properties and relations between these properties of macrospicules as function of time during the observed time interval. We found that cross-correlations of several of these macrospicule properties display a strong oscillatory pattern. Next, wavelet analysis is used to provide more detailed information about the temporal behaviour of the various properties of MS. For coronal hole macrospicules, a significant peak is found at around 2-year period. This peak also exists partially or is shifted to longer period, in the case of quiet Sun macrospicules. These observed findings may be rooted in the underlying mechanism generating the solar magnetic field, i.e. the global solar dynamo.  相似文献   

11.
The presence of small-amplitude oscillations in prominences is well-known from long time ago. These oscillations, whose exciters are still unknown, seem to be of local nature and are interpreted in terms of magnetohydrodynamic (MHD) waves. During last years, observational evidence about the damping of these oscillations has grown and several mechanisms able to damp these oscillations have been the subject of intense theoretical modelling. Among them, the most efficient seem to be radiative cooling and ion-neutral collisions. Radiative cooling is able to damp slow MHD waves efficiently, while ion-neutral collisions, in partially ionised plasmas like those of solar prominences, can also damp fast MHD waves. In this paper, we plan to summarize our current knowledge about the time and spatial damping of small-amplitude oscillations in prominences.  相似文献   

12.
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.  相似文献   

13.
The study concerns the streamer belt observed at high spectral resolution during the minimum of solar cycle 23 with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model, in order to define the streamer boundary and to analyse the edges of coronal holes. The results of the analysis allow an accurate identification of the source regions of the slow coronal wind that are confirmed to be along the streamer boundary in the open magnetic field region.  相似文献   

14.
15.
We first briefly review the current trend in the studies of coronal mass ejections (CMEs), then summarize some recent efforts in understanding the CME initiation. Emphasis has been put on the studies of Earth-directed CMEs whose associated surface activity and large scale magnetic source have been well identified. The data analysis by combining the MDI full disc magnetograms, vector magnetograms of active regions, EUV waves and dimmings, non-thermal radio sources, and the SOHO LASCO observations has shed new light in understanding the CME magnetism. However, the current studies seem to invoke new observations in a few aspects: (1) The observations which enable us to trace CMEs from the earliest associated surface activity to its initial acceleration and key development in the low corona in the height of 1–3 R; (2) The imaging spectroscopic observations which can be used to diagnose the early plasma outflow and the line-of-sight velocity in understanding the kinematics of CMEs; (3) The accurate timing from primary magnetic energy release, manifested by chromospheric activity, non-thermal radio bursts, and EUV, X-ray and γ-ray emissions, to the CME initiation, early acceleration and propagation, and the consequences in the interplanetary space and magnetosphere. The Kuafu Mission will meet the basic requirement for the new observations in CME initiation studies and serve as a monitor of space weather of the Sun–Earth system.  相似文献   

16.
This study performs simulations of interplanetary coronal mass ejection (ICME) propagation in a realistic three-dimensional (3D) solar wind structure from the Sun to the Earth by using the newly developed hybrid code, HAFv.2+3DMHD. This model combines two simulation codes, Hakamada–Akasofu–Fry code version 2 (HAFv.2) and a fully 3D, time-dependent MHD simulation code. The solar wind structure is simulated out to 0.08 AU (18 Rs) from source surface maps using the HAFv.2 code. The outputs at 0.08 AU are then used to provide inputs for the lower boundary, at that location, of the 3D MHD code to calculate solar wind and its evolution to 1 AU and beyond. A dynamic disturbance, mimicking a particular flare’s energy output, is delivered to this non-uniform structure to model the evolution and interplanetary propagation of ICMEs (including their shocks). We then show the interaction between two ICMEs and the dynamic process during the overtaking of one shock by the other. The results show that both CMEs and heliosphere current sheet/plasma sheet were deformed by interacting with each other.  相似文献   

17.
Wave and oscillatory activity is observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands in all parts of the solar corona. Magnetohydrodynamic (MHD) wave theory gives satisfactory interpretation of these phenomena in terms of MHD modes of coronal structures. The paper reviews the current trends in the observational study of coronal oscillations, recent development of theoretical modelling of MHD wave interaction with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasmas is discussed. In particular, the applicability of this method to the estimation of the coronal magnetic field is demonstrated.  相似文献   

18.
The atmosphere of the Sun is highly structured and dynamic in nature. From the photosphere and chromosphere into the transition region and the corona plasma-β changes from above to below one, i.e., while in the lower atmosphere the energy density of the plasma dominates, in the upper atmosphere the magnetic field plays the governing role – one might speak of a “magnetic transition”. Therefore the dynamics of the overshooting convection in the photosphere, the granulation, is shuffling the magnetic field around in the photosphere. This leads not only to a (re-)structuring of the magnetic field in the upper atmosphere, but induces also the dynamic reaction of the coronal plasma, e.g., due to reconnection events. Therefore the (complex) structure and the interaction of various magnetic patches is crucial to understand the structure, dynamics and heating of coronal plasma as well as its acceleration into the solar wind.

The present article will emphasize the need for three-dimensional modeling accounting for the complexity of the solar atmosphere to understand these processes. Some advances on 3D modeling of the upper solar atmosphere in magnetically closed as well as open regions will be presented together with diagnostic tools to compare these models to observations. This highlights the recent success of these models which in many respects closely match the observations.  相似文献   


19.
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions.  相似文献   

20.
We investigate on the relationship between flares and coronal mass ejections (CMEs) in which a flare started before and after the CME events which differ in their physical properties, indicating potentially different initiation mechanisms. The physical properties of two types flare-correlated CME remain an interesting and important question in space weather. We study the relationship between flares and CMEs using a different approach requiring both temporal and spatial constraints during the period from December 1, 2008 to April 30, 2017 in which the CMEs data were acquired by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) over the solar cycle 24. The soft X-ray flare flux data, such as flare class, location, onset time and integrated flux, are collected from Geostationary Environmental satellite (GOES) and XRT Flare catalogs. We selected 307 CMEs-flares pairs applying simultaneously temporal and spatial constraints in all events for the distinguish between two associated CME-flare types. We study the correlated properties of coincident flares and CMEs during this period, specifically separating the sample into two types: flares that precede a CME and flares that follow a CME. We found an opposite correlation relationship between the acceleration and velocity of CMEs in the After- and Before-CMEs events. We found a log-log relation between the width and mass of CMEs in the two associated types. The CMEs and flares properties show that there were significant differences in all physical parameters such as (mass, angular width, kinetic energy, speed and acceleration) between two flare-associated CME types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号