首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In synthetic aperture radar a large linear phased array is formed from the rapid movement of a single element through each position in the array. Storage and coherent combining of the successive radar echoes are central to the array-forming process. Optical processing is the most common technique because of the efficiency with which Fourier transformation may be accomplished with simple optics. Real-time operation, however, requires all-electronic processing, which is difficult to accomplish because of the huge quantity of data to be manipulated. Dynamic range compression by hard limiting may ease the problem by reducing the number of bits per frame. The effects of hard limiting are analyzed in this paper. It is shown that large targets simultaneously illuminated by the radar antenna will produce image targets or ghosts displaced in angle. Statistically homogeneous clutter will "linearize" the hard-limited receiver and suppress the ghosts without loss in contrast, as does thermal noise if it is larger than the target echoes. Pulse compression reduces the probability of images from prominent targets. Judicious choice of the pulse-compression waveform is a powerful tool for destroying coherent buildup of images from all large targets not in the same range resolution cell. Linear FM, the most common choice, unfortunately does not exhibit this desirable property.  相似文献   

2.
The paper examines the problem of cancellation of direct signal, multipath and clutter echoes in passive bistatic radar (PBR). This problem is exacerbated as the transmitted waveform is not under control of the radar designer and the sidelobes of the ambiguity function can mask targets including those displaced in either (or both) range and Doppler from the disturbance. A novel multistage approach is developed for disturbance cancellation and target detection based on projections of the received signal in a subspace orthogonal to both the disturbance and previously detected targets. The resulting algorithm is shown to be effective against typical simulated scenarios with a limited number of stages, and a version with computational savings is also introduced. Finally its effectiveness is demonstrated with the application to real data acquired with an experimental VHF PBR system.  相似文献   

3.
应涛  黄高明  左炜  单鸿昌  高俊 《航空学报》2016,37(2):626-636
在非合作无源探测系统中,弱目标回波不仅会受到强直达波、强多径的干扰,还会受到强目标的掩盖干扰,因此很难对其进行有效检测。为了解决这一问题,提出了一种基于多择复合假设检验的弱目标检测方法。首先将接收信号投影到多径干扰的正交补子空间内,以消除强直达波和强多径干扰,然后将目标检测看作一个多择复合假设检验问题,建立了与之相应的基本框架模型,利用最大后验估计方法对目标时延、多普勒频移及信号幅度等参数进行估计,构造检验统计量,设置相应的门限,根据假设检验结果,逐个消除强目标干扰从而达到检测弱目标的目的。仿真结果表明,本方法可以有效抑制强直达波、强多径及强目标干扰,有效检测出弱目标,且虚警率低。  相似文献   

4.
Unresolved Rayleigh target detection using monopulse measurements   总被引:3,自引:0,他引:3  
When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm  相似文献   

5.
Moving Targets Processing in SAR Spatial Domain   总被引:2,自引:0,他引:2  
This paper presents a novel technique to estimate the initial coordinates and velocity vector of moving targets, including those with velocities above the Nyquist limit, using a single synthetic aperture radar (SAR) sensor without increasing the pulse repetition frequency (PRF). The basic reasoning is that, although the returned echoes may be undersampled in the azimuth direction, their phase and amplitude are informative with respect to the moving target trajectory parameters. Therefore, the so-called blind angle ambiguity, inherent to systems using a single SAR sensor, is overcome. The proposed method samples the data in the spatial domain, along the signature curve which depends on the moving target trajectory parameters. The resulting algorithm is a highly efficient (from the computational point of view) ID matched filter. The effectiveness of the proposed scheme is illustrated using simulated SAR data and real data from the MSTAR public release data set, corresponding to a static SAR scene and a static BTR-60 with simulated motion.  相似文献   

6.
A hidden Markov model (HMM)-based method for recognizing aerial targets according to the sequential high-range-resolution (HRR) radar signature is presented. Its recognition features are the location information of scattering centers extracted from the HRR radar echoes by the relax algorithm. The HMM is used to characterize the spatio-temporal information of a target. Several HMMs are cascaded in a chain to model the variation in the target orientation and used as classifiers. Computer simulations with the inverse synthetic aperture radar (ISAR) data are given to demonstrate that for an open-set recognition, average class-recognition rates of 84.50% and 89.88% are achieved, respectively, under two given conditions.  相似文献   

7.
In this paper we present a family of track-before-detect (TBD) procedures for early detection of moving targets from airborne radars. Upon a sectorization of the coverage area, the received echoes are jointly processed in the azimuth-range-Doppler domain and in the time domain through a Viterbi-like algorithm that exploits the physically admissible target transitions between successive illuminations, in order to collect all of the energy back-scattered during the time on target (TOT). A reduced-complexity implementation is derived assuming, at the design stage, that the target does not change resolution cell during the TOT in each scan. The constant false alarm rate (CFAR) constraint is also englobed in the proposed procedures as well as the possibility of working with quantized data. Simulation results show that the proposed algorithms have good detection and tracking capabilities even for high target velocities and low quantization rates.  相似文献   

8.
为了获得空间目标的微动信息,需要对雷达回波中的高速平动分量进行精确补偿。针对空间目标高速运动对微动信息提取的影响问题,首先分析了空间目标平动对微多普勒频率的调制影响,得到目标高速平动,特别是平动加速度、平动加加速度对微多普勒频率趋势性调制现象将干扰微多普勒频率提取的结论。在此基础上,利用目标平动直接导致目标多普勒频谱展宽的特点,提出了一种基于图像质量度量准则的空间目标平动参数估计方法,并根据估计出的平动参数实现运动补偿。最后,采用空间目标多散射中心模型,进行平动补偿分析,仿真结果验证了该方法的有效性。  相似文献   

9.
A technique for calibration of multipolarization synthetic-aperture radar (SAR) imagery is described. If scatterer reciprocity and lack of correlation between co- and cross-polarized radar echoes (for azimuthally symmetric distributed targets) are assumed, the effects of signal leakage between the radar data channels can be removed without the use of known ground targets. If known targets are available, all data channels can be calibrated relative to one another and radiometrically as well. The method is verified with simulation and application to airborne SAR data  相似文献   

10.
Propagation errors along paths between an array radar and a distribution of targets cause degradations in angle measurements and detection range. The overall objective of the research described in this paper was to analyze and demonstrate the use of conjugate reflections for compensating adverse effects of path errors. The effect of reflecting the conjugate of an incident wave is described mathematically and is demonstrated by computer simulation. Repeated conjugate reflections are shown to result in the formation of a single beam usually focussed on a target highlight. Echoes from this spatial reference, or "beacon" are shown to provide the means by which aperture phase errors may be effectively compensated. Results of radar simulations include two-way patterns computed for an example involving a distribution of three-point targets and half-wave-length Gaussian aperture errors. Without compensation a gain loss of 12 dB is computed; with error correction, based on echoes from an adaptively focussed beam, the two-way pattern is within a small fraction of a dB of the ideal pattern. The effect of noise on adaptive beacon forming was considered for a case involving one target. Repeated conjugate reflections improve signal-to-noise ratio as long as the effect of noise is less than the effect of aperture dephasing on the power reflected back to the target. An example is presented in which signal-to-noise ratio at the output of the receiver combining network is increased from 4 to 11.8 dB.  相似文献   

11.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

12.
Monopulse DOA estimation of two unresolved Rayleigh targets   总被引:3,自引:0,他引:3  
This paper provides for new approaches to the processing of unresolved measurements as two direction-of-arrival (DOA) measurements for tracking closely spaced targets rather than the conventional single DOA measurement of the centroid. The measurements of the two-closely spaced targets are merged when the target echoes are not resolved in angle, range, or radial velocity (i.e., Doppler processing). The conditional Cramer Rao lower bound (CRLB) is developed for the DOA estimation of two unresolved Rayleigh targets using a standard monopulse radar. Then the modified CRLB is used to give insight into the boresight pointing for monopulse DOA estimation of two unresolved targets. Monopulse processing is considered for DOA estimation of two unresolved Rayleigh targets with known or estimated relative radar cross section (RCS). The performance of the DOA estimator is studied via Monte Carlo simulations and compared with the modified CRLB  相似文献   

13.
GMM-based target classification for ground surveillance Doppler radar   总被引:3,自引:0,他引:3  
An automatic target recognition (ATR) algorithm, based on greedy learning of Gaussian mixture model (GMM) is developed. The GMMs were obtained for a wide range of ground surveillance radar targets such as walking person(s), tracked or wheeled vehicles, animals, and clutter. Maximum-likelihood (ML) and majority-voting decision schemes were applied to these models for target classification. The corresponding classifiers were trained and tested using distinct databases of target echoes, recorded by ground surveillance radar. ML and majority-voting classifiers obtained classification rates of 88% and 96%, correspondingly. Both classifiers outperform trained human operators.  相似文献   

14.
A train of radar pulses from one resolution cell can be processed coherently to reject echoes from external clutter and detect targets moving radially with respect to the clutter. Optimum methods of signal processing are defined for systems in which the interpulse spacings are multiply staggered to avoid target blind speeds. Likelihood ratio tests are developed for systems in which the target Doppler frequency is known a priori and for systems employing a bank of filters to cover the target Doppler band. To implement such tests, the N pulses in the train are added with complex weights and the amplitude of the sum compared with a detection threshold. The set of weights which maximizes the average signal-to-clutter ratio is also computed for a single-filter system with unknown target Doppler frequency. When the clutter autocorrelation function is exponential, the clutter covariance matrix can be inverted analytically. This latter result is useful for comparing different interpulse-spacing codes for a particular system application.  相似文献   

15.
We consider the problem of tracking a maneuvering target in clutter. In such an environment, missed detections and false alarms make it impossible to decide, with certainty, the origin of received echoes. Processing radar returns in cluttered environments consists of three functions: 1) target detection and plot formation, 2) plot-to-track association, and 3) track updating. Two inadequacies of the present approaches are 1) Optimization of detection characteristics have not been considered and 2) features that can be used in the plot-to-track correlation process are restricted to a specific class. This paper presents a new approach to overcome these limitations. This approach facilitates tracking of a maneuvering target in clutter and improves tracking performance for weak targets.  相似文献   

16.
空间目标三维成像可为目标的特征提取、分类与识别提供重要依据。基于L型三天线干涉成像原理,提出了一种宽带雷达条件下空间自旋目标干涉三维成像方法。首先,分析了雷达发射线性调频(LFM)信号条件下,空间自旋目标在距离-慢时间平面上的成像特点,建立了基于距离-慢时间平面的空间自旋目标干涉三维成像模型;其次,针对建立的干涉三维成像模型中,不同散射点的回波在距离-慢时间平面上会相互交叠的问题,对回波曲线分离、交叉点处理以及一维距离旁瓣的影响等进行了讨论,并给出了解决方法,从而获得目标三维图像。与已有方法相比,该方法可有效克服单基雷达三维成像无法获得目标各散射点真实三维位置以及在双/多基雷达三维成像时多部雷达回波联合处理较困难的问题。最后,仿真实验结果验证了所提方法的有效性。  相似文献   

17.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

18.
武拥军  吴先良 《航空学报》2010,31(4):825-830
建立了机载并行双站斜视合成孔径雷达(SAR)的几何模型,给出了雷达回波的数学表达式,推导了它的二维频谱并对其特点做了分析。在二维频域内,先用聚焦函数对观测场景中心的点目标做精确成像,然后用Chirp-Z变换(CZT)校正中心点两侧目标回波的距离徙动,再通过方位向逆傅里叶变换得到了雷达图像。该算法利用了CZT能够处理非线性调频信号的特点,简化了处理过程,提高了计算效率和成像精度。仿真实验验证了这种基于CZT的新算法在处理并行双站斜视SAR数据时的有效性。  相似文献   

19.
This paper provides general models of radar echoes from a target. The rationale of the approach is to consider the echoes as the output of a linear dynamic system driven by white Gaussian noise (WGN). Two models can be conceived to generate N target returns: samples generated as a batch, or sequentially generated one by one. The models allow the accommodation of any correlation between pulses and nonstationary behavior of the target. The problem of deriving the optimum receiver structure is next considered. The theory of "estimator-correlator" receiver is applied to the case of a Gaussian-distributed time-correlated target embedded in clutter and thermal noise. Two equivalent detection schemes are obtained (i. e., the batch detector and the recursive detector) which are related to the above mentioned procedures of generating radar echoes. A combined analytic-numeric method has been conceived to obtain a set of original detection curves related to operational cases of interest. Finally, an adaptive implementation of the proposed processor is suggested, especially with reference to the problem of on-line estimation of the clutter covariance matrix and of the CFAR threshold. In both cases detection loss due to adaptation has been evaluated by means of a Monte Carlo simulation approach. In summary, the original contributions of the paper lie in the mathematical formulation of a powerful model for radar echoes and in the derivation of a large set of detection curves.  相似文献   

20.
A new methodology is presented to retrieve slant-range velocity estimates of moving targets inducing Doppler-shifts beyond the Nyquist limit determined by the pulse repetition frequency (PRF). The proposed approach exploits the linear dependence (not subject to PRF limitations) of the Doppler-shift with respect to the slant-range velocity, at each wavelength. Basically, we propose an algorithm to compute the skew of the two-dimensional spectral signature of a moving target. Distinctive features of this algorithm are its ability to cope with strong range migration and its efficiency from the computational point of view. By combining the developed scheme to retrieve the slant-range velocity with a methodology proposed earlier to estimate the velocity vector magnitude, the full velocity vector is unambiguously retrieved without increasing the mission PRF. The method gives effective results even when the returned echoes of the moving targets and the static ground overlap completely, provided that the moving targets signatures are digitally spotlighted and the signal-to-clutter ratio (SCR) is, roughly, greater than 14 dB. The effectiveness of the method is illustrated with simulated and real data. As an example, slant-range velocities of moving objects with velocities between 6 and 12 times the Nyquist velocity are estimated with accuracy better than 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号