共查询到20条相似文献,搜索用时 0 毫秒
1.
The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
G. Bruce Andrews Thomas H. Zurbuchen Barry H. Mauk Horace Malcom Lennard A. Fisk George Gloeckler George C. Ho Jeffrey S. Kelley Patrick L. Koehn Thomas W. LeFevere Stefano S. Livi Robert A. Lundgren Jim M. Raines 《Space Science Reviews》2007,131(1-4):523-556
The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast
Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components
of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions
of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small
footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments. 相似文献
2.
James C. Leary Richard F. Conde George Dakermanji Carl S. Engelbrecht Carl J. Ercol Karl B. Fielhauer David G. Grant Theodore J. Hartka Tracy A. Hill Stephen E. Jaskulek Mary A. Mirantes Larry E. Mosher Michael V. Paul David F. Persons Elliot H. Rodberg Dipak K. Srinivasan Robin M. Vaughan Samuel R. Wiley 《Space Science Reviews》2007,131(1-4):187-217
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury
orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum
launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and
associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery,
and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software
(e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g.,
attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency
telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments
and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing
effort that provided the team with confidence that all mission goals will be achieved.
Larry E. Mosher passed away during the preparation of this paper. 相似文献
3.
Charles E. Schlemm II Richard D. Starr George C. Ho Kathryn E. Bechtold Sarah A. Hamilton John D. Boldt William V. Boynton Walter Bradley Martin E. Fraeman Robert E. Gold John O. Goldsten John R. Hayes Stephen E. Jaskulek Egidio Rossano Robert A. Rumpf Edward D. Schaefer Kim Strohbehn Richard G. Shelton Raymond E. Thompson Jacob I. Trombka Bruce D. Williams 《Space Science Reviews》2007,131(1-4):393-415
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of
the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital
phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft
will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface
of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12°
field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis
due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority
of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes
XRS’s science objectives, technical design, calibration, and mission observation strategy. 相似文献
4.
John O. Goldsten Edgar A. Rhodes William V. Boynton William C. Feldman David J. Lawrence Jacob I. Trombka David M. Smith Larry G. Evans Jack White Norman W. Madden Peter C. Berg Graham A. Murphy Reid S. Gurnee Kim Strohbehn Bruce D. Williams Edward D. Schaefer Christopher A. Monaco Christopher P. Cork J. Del Eckels Wayne O. Miller Morgan T. Burks Lisle B. Hagler Steve J. DeTeresa Monika C. Witte 《Space Science Reviews》2007,131(1-4):339-391
A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery
Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched
successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation.
The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet
surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects
gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum
for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide
the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the
intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft,
but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron
Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of
ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help
resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer
and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort,
and a look at some early in-flight data. 相似文献
5.
Maria T. Zuber Oded Aharonson Jonathan M. Aurnou Andrew F. Cheng Steven A. Hauck II Moritz H. Heimpel Gregory A. Neumann Stanton J. Peale Roger J. Phillips David E. Smith Sean C. Solomon Sabine Stanley 《Space Science Reviews》2007,131(1-4):105-132
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the
Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the
terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s
spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution
if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were
molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core
is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative
of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a
core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate
fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current
knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise
of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of
that evolution to the planet’s geological history. 相似文献
6.
Dipak K. Srinivasan Mark E. Perry Karl B. Fielhauer David E. Smith Maria T. Zuber 《Space Science Reviews》2007,131(1-4):557-571
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Radio Frequency (RF) Telecommunications Subsystem
is used to send commands to the spacecraft, transmit information on the state of the spacecraft and science-related observations,
and assist in navigating the spacecraft to and in orbit about Mercury by providing precise observations of the spacecraft’s
Doppler velocity and range in the line of sight to Earth. The RF signal is transmitted and received at X-band frequencies
(7.2 GHz uplink, 8.4 GHz downlink) by the NASA Deep Space Network. The tracking data from MESSENGER will contribute significantly
to achieving the mission’s geophysics objectives. The RF subsystem, as the radio science instrument, will help determine Mercury’s
gravitational field and, in conjunction with the Mercury Laser Altimeter instrument, help determine the topography of the
planet. Further analysis of the data will improve the knowledge of the planet’s orbital ephemeris and rotation state. The
rotational state determination includes refined measurements of the obliquity and forced physical libration, which are necessary
to characterize Mercury’s core state. 相似文献
7.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists
of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet
and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating,
Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle
ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure
altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability
and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph
equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array
(300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface
reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical
composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or
smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed
design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital
operations around Mercury. 相似文献
8.
Helene L. Winters Deborah L. Domingue Teck H. Choo Raymond Espiritu Christopher Hash Erick Malaret Alan A. Mick Joseph P. Skura Joshua Steele 《Space Science Reviews》2007,131(1-4):601-623
The MESSENGER Science Operations Center (SOC) is an integrated set of subsystems and personnel whose purpose is to obtain,
provide, and preserve the scientific measurements and analysis that fulfill the objectives of the MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER) mission. The SOC has two main functional areas. The first is to facilitate science instrument
planning and operational activities, including related spacecraft guidance and control operations, and to work closely with
the Mission Operations Center to implement those plans. The second functional area, data management and analysis, involves
the receipt of science-related telemetry, reformatting and cataloging this telemetry and related ancillary information, retaining
the science data for use by the MESSENGER Science Team, and preparing data archives for delivery to the Planetary Data System;
and the provision of operational assistance to the instrument and science teams in executing their algorithms and generating
higher-level data products. 相似文献
9.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
10.
The Geology of Mercury: The View Prior to the MESSENGER Mission 总被引:1,自引:0,他引:1
James W. Head Clark R. Chapman Deborah L. Domingue S. Edward Hawkins III William E. McClintock Scott L. Murchie Louise M. Prockter Mark S. Robinson Robert G. Strom Thomas R. Watters 《Space Science Reviews》2007,131(1-4):41-84
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an
exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface,
a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of
the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with
major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current
image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik
in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor
(∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening
due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because
of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury
is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping
of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and
crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that
provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat
loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the
global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history
and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to
disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry;
(6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations
in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those
on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be
further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships
of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century
since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route
to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth
of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury
using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data. 相似文献
11.
The Mercury Dual Imaging System on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
S. Edward Hawkins III John D. Boldt Edward H. Darlington Raymond Espiritu Robert E. Gold Bruce Gotwols Matthew P. Grey Christopher D. Hash John R. Hayes Steven E. Jaskulek Charles J. Kardian Jr. Mary R. Keller Erick R. Malaret Scott L. Murchie Patricia K. Murphy Keith Peacock Louise M. Prockter R. Alan Reiter Mark S. Robinson Edward D. Schaefer Richard G. Shelton Raymond E. Sterner II Howard W. Taylor Thomas R. Watters Bruce D. Williams 《Space Science Reviews》2007,131(1-4):247-338
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin
and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC
is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color
filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled
device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and
the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward
from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel
binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at
Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission
angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor
images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct
a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips.
Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement
history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper
summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing
units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated
from MDIS data. 相似文献
12.
Sean C. Solomon Ralph L. McNutt Jr. Robert E. Gold Deborah L. Domingue 《Space Science Reviews》2007,131(1-4):3-39
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on August 3, 2004, is nearing the halfway point on its voyage to become the first probe to orbit the planet Mercury. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: (1) What planetary formational processes led to Mercury’s high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury’s magnetic field? (4) What are the structure and state of Mercury’s core? (5) What are the radar-reflective materials at Mercury’s poles? (6) What are the important volatile species and their sources and sinks near Mercury? The mission has focused to date on commissioning the spacecraft and science payload as well as planning for flyby and orbital operations. The second Venus flyby (June 2007) will complete final rehearsals for the Mercury flyby operations in January and October 2008 and September 2009. Those flybys will provide opportunities to image the hemisphere of the planet not seen by Mariner 10, obtain high-resolution spectral observations with which to map surface mineralogy and assay the exosphere, and carry out an exploration of the magnetic field and energetic particle distribution in the near-Mercury environment. The orbital phase, beginning on March 18, 2011, is a one-year-long, near-polar-orbital observational campaign that will address all mission goals. The orbital phase will complete global imaging, yield detailed surface compositional and topographic data over the northern hemisphere, determine the geometry of Mercury’s internal magnetic field and magnetosphere, ascertain the radius and physical state of Mercury’s outer core, assess the nature of Mercury’s polar deposits, and inventory exospheric neutrals and magnetospheric charged particle species over a range of dynamic conditions. Answering the questions that have guided the MESSENGER mission will expand our understanding of the formation and evolution of the terrestrial planets as a family. 相似文献
13.
William V. Boynton Ann L. Sprague Sean C. Solomon Richard D. Starr Larry G. Evans William C. Feldman Jacob I. Trombka Edgar A. Rhodes 《Space Science Reviews》2007,131(1-4):85-104
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited
to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer
(GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al,
Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction:
aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements,
with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust
and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount
of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to
water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount
of Fe present in other forms, including metal and sulfides. 相似文献
14.
On August 3, 2004, at 2:15 a.m. EST, the MESSENGER mission to Mercury began with liftoff of the Delta II 7925H launch vehicle and 1,107-kg spacecraft including seven instruments. MESSENGER is the seventh in the series of NASA Discovery missions, the third to be built and operated by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) following the Near Earth Asteroid Rendezvous (NEAR) Shoemaker and Comet Nucleus Tour (CONTOUR) missions. The MESSENGER team at JHU/APL is using efficient operations approaches developed in support of the low-cost NEAR and CONTOUR operations while incorporating improved approaches for reducing total mission risk. This paper provides an overview of the designs and operational practices implemented to conduct the MESSENGER mission safely and effectively. These practices include proven approaches used on past JHU/APL operations and new improvements implemented to reduce risk, including adherence to time-proven standards of conduct in the planning and implementation of the mission. This paper also discusses the unique challenges of operating in orbit around Mercury, the closest planet to the Sun, and what specific measures are being taken to address those challenges. 相似文献
15.
André Balogh Réjean Grard Sean C. Solomon Rita Schulz Yves Langevin Yasumasa Kasaba Masaki Fujimoto 《Space Science Reviews》2007,132(2-4):611-645
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive
understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational
well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner
10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late
1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury
in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in
detail. 相似文献
16.
John F. Cavanaugh James C. Smith Xiaoli Sun Arlin E. Bartels Luis Ramos-Izquierdo Danny J. Krebs Jan F. McGarry Raymond Trunzo Anne Marie Novo-Gradac Jamie L. Britt Jerry Karsh Richard B. Katz Alan T. Lukemire Richard Szymkiewicz Daniel L. Berry Joseph P. Swinski Gregory A. Neumann Maria T. Zuber David E. Smith 《Space Science Reviews》2007,131(1-4):451-479
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing. 相似文献
17.
M. Fujimoto W. Baumjohann K. Kabin R. Nakamura J. A. Slavin N. Terada L. Zelenyi 《Space Science Reviews》2007,132(2-4):529-550
The small intrinsic magnetic field of Mercury together with its proximity to the Sun makes the Hermean magnetosphere unique in the context of comparative magnetosphere study. The basic framework of the Hermean magnetosphere is believed to be the same as that of Earth. However, there exist various differences which cause new and exciting effects not present at Earth to appear. These new effects may force a substantial correction of our naïve predictions concerning the magnetosphere of Mercury. Here, we outline the predictions based on our experience at Earth and what effects can drastically change this picture. The basic structure of the magnetosphere is likely to be understood by scaling the Earth’s case but its dynamic aspect is likely modified significantly by the smallness of the Hermean magnetosphere and the substantial presence of heavy ions coming from the planet’s surface. 相似文献
18.
James V. McAdams Robert W. Farquhar Anthony H. Taylor Bobby G. Williams 《Space Science Reviews》2007,131(1-4):219-246
Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year). 相似文献
19.
Deborah L. Domingue Patrick L. Koehn Rosemary M. Killen Ann L. Sprague Menelaos Sarantos Andrew F. Cheng Eric T. Bradley William E. McClintock 《Space Science Reviews》2007,131(1-4):161-186
The existence of a surface-bounded exosphere about Mercury was discovered through the Mariner 10 airglow and occultation experiments.
Most of what is currently known or understood about this very tenuous atmosphere, however, comes from ground-based telescopic
observations. It is likely that only a subset of the exospheric constituents have been identified, but their variable abundance
with location, time, and space weather events demonstrate that Mercury’s exosphere is part of a complex system involving the
planet’s surface, magnetosphere, and the surrounding space environment (the solar wind and interplanetary magnetic field).
This paper reviews the current hypotheses and supporting observations concerning the processes that form and support the exosphere.
The outstanding questions and issues regarding Mercury’s exosphere stem from our current lack of knowledge concerning the
surface composition, the magnetic field behavior within the local space environment, and the character of the local space
environment. 相似文献
20.
L. G. Blomberg J. A. Cumnock K.-H. Glassmeier R. A. Treumann 《Space Science Reviews》2007,132(2-4):575-591
The Hermean magnetosphere is likely to contain a number of wave phenomena. We briefly review what little is known so far about
fields and waves around Mercury. We further discuss a number of possible phenomena, including ULF pulsations, acceleration-related
radiation, bow shock waves, bremsstrahlung (or braking radiation), and synchrotron radiation. Finally, some predictions are
made as to the likelihood that some of these types of wave emission exist. 相似文献