首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new two-dimensional divergence-free heliospheric magnetic field of which the radial component depends on latitudinal gradients in the solar wind speed. It is used in a two-dimensional numerical modulation model to study its qualitative effects on cosmic-ray modulation. We find that this field causes large solar-cycle polarity dependent increases in cosmic-ray intensities at either high or low latitudes and we discuss the reasons for this.  相似文献   

2.
The solar wind is a high Reynolds’ number plasma flow of solar origin that permeates the whole heliosphere. It is also the only accessible medium in which to study collisionless magnetohydrodynamic turbulence performing direct measurements. This represents a topic of fundamental importance to both plasma physics and astrophysics. During the past decades, in situ observations on the ecliptic and at high heliographic latitudes have been very valuable to shed some light on the intricate nature of space plasma turbulence. In this brief review, we will mainly describe the evolution experienced by the turbulence as the solar wind expands into the interplanetary space. We will also address implications due to different processes of local generation of turbulence which might be at work on the ecliptic and at high latitude. Moreover, the fact that solar wind fluctuations are not isotropic and poorly single scale-invariant, two of the fundamental hypotheses at the basis of Kolmogorov’s theory (K41), will give us the possibility to discuss also the relevance of intermittency in the study of space plasma turbulence.  相似文献   

3.
Results of investigations of cosmogenic isotope radioactivity in chondrites fallen to earth during two solar cycles are presented. The data obtained on radial and latitudinal gradients cover the period 1955–1976, heliocentric distances from 1.03 AU to 3.33 AU, and heliographic latitudes from 23°S to 16°N. The dependence of radial and latitudinal gradients on the phase of solar activity is established, as well as a north-south asymmetry during a certain period after the inversion of the general solar magnetic field in 1969.  相似文献   

4.
The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.  相似文献   

5.
Seven coronal radio-sounding campaigns were carried out during the active lifetime of the Galileo spacecraft in the years 1994–2002. The observational data analyzed in the present work are S-band frequency fluctuation measurements recorded during the solar conjunctions at different phases of solar activity cycle #23, specifically: periods near solar maximum (three conjunctions), near solar minimum (three conjunctions) and during the ascending phase (one conjunction). These data are all applicable to low heliographic latitudes, i.e. to the slow solar wind. The rms frequency fluctuation and power-law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The turbulence power spectrum tends to be flatter inside ca. 20 solar radii during all phases of the solar cycle. This coincides with a transition in the flow from the inner acceleration region to the outer region of constant velocity. The radial falloff rate and absolute level of the rms frequency fluctuation are essentially invariant over the solar cycle.  相似文献   

6.
The scientific rationale of the Solar Orbiter is to provide, at high spatial (35 km pixel size) and temporal resolution, observations of the solar atmosphere and unexplored inner heliosphere. Novel observations will be made in the almost heliosynchronous segments of the orbits at heliocentric distances near 45 R and out of the ecliptic plane at the highest heliographic latitudes of 30° – 38°. The Solar Orbiter will achieve its wide-ranging aims with a suite of sophisticated instruments through an innovative design of the orbit. The first near-Sun interplanetary measurements together with concurrent remote observations of the Sun will permit us to determine and understand, through correlative studies, the characteristics of the solar wind and energetic particles in close linkage with the plasma and radiation conditions in their source regions on the Sun. Over extended periods the Solar Orbiter will deliver the first images of the polar regions and the side of the Sun invisible from the Earth.  相似文献   

7.
New results from Pioneer Orbiter observations indicate a continued vortex organization of the cloud level atmosphere in either hemisphere, centered over respective poles. Significant changes in the magnitude of the cloud level zonal circulation over a period of several years have been detected. A strong signature of the solar tidal circulation has been detected in the atmospheric circulation with the lowest speeds occurring in equatorial latitudes about 20° upstream of the sub-solar point. Finally, a solar-locked persistent spatial structure has been discovered in the variance of the ultraviolet brightness measured from brightness normalized images of Venus. Vega balloons (drifting at about 53 km altitude near 7°N and 7°S latitudes) have also provided some unique observations of atmospheric circulation, significant among them being the strong vertical motions, the zonality of their drift speeds as well as a significant temperature difference between the two balloons. The temperature difference which amounts to 6.5°K on average is currently being interpreted as a temperature variation with longitude or time.

Diagnostic modelling efforts towards simulating the atmospheric circulation on Venus are continuing and have provided some clues about the processes that maintain them but have not yet been successful in explaining the superrotation of the atmosphere.

Knowledge of the Martian atmospheric dynamics on the other hand is still limited by lack of adequate observations. Numerical modelling of the Martian atmosphere continues to provide most of the information about the atmospheric circulation. The situation regarding the paucity of observations should improve with the completion of the proposed Mars Observer mission. The low circular polar orbit planned provides an excellent opportunity to study the Martian atmosphere.  相似文献   


8.
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1–8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445–448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449–450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003.) is similar to the current Schwadron–Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron–Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445–448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron–Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.  相似文献   

9.
We consider regular motion of 50 – 200 GV particles in a large-scale interplanetary magnetic field model which contains a wavy neutral sheet responsible for the sector-structure. Numerical calculations based upon energy losses along various trajectories are carried out to obtain the predicted omni-directional density and anisotropy of cosmic rays at various solar latitudes. A marked difference is found between odd and even solar cycles. The post-1969 field configuration gives small radial and large latitudinal gradient: cosmic ray density increases toward the poles. The latitudinal gradient turns out smaller and of opposite sense for the pre-1969 epoch. Anisotropy changes dramatically as we move off the solar equator: corotation appears to be restricted to low latitudes.  相似文献   

10.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

11.
Based on the ISL data detected by DEMETER satellite, the solar cycle variation in electron density (Ne) and electron temperature (Te) were studied separately in local daytime 10:30 and nighttime 22:30 during 2005–2010 in the 23rd/24th solar cycles. The semi-annual, annual periods and decreasing trend with the descending solar activity were clearly revealed in Ne. At middle and high latitudes, there exhibited phase shift and even reversed annual variation over Southern and Northern hemisphere, and the annual variation amplitudes were asymmetrical at both hemispheres in local daytime. In local nighttime, the annual variations of Ne at south and north hemispheres were symmetrical at same latitudes, but the annual variation amplitudes at different latitudes differed largely, showing obviously zonal features. As for Te, the phase shift in annual variations was not as apparent as Ne with the increase of latitudes at Southern and Northern hemisphere in local daytime. While in local nighttime the reversed annual variations of Te were shown at low latitudinal areas, not at high latitudes as those in Ne. The correlation study on Ne and Te illustrated that, in local daytime, Ne and Te showed strong negative correlation at equator and low latitudes, but during the solar minimum years the correlation between Ne and Te changed to be positive at 25–30° latitudes in March 2009. The correlation coefficient R between Ne and Te also showed semi-annual periodical variations during 2005–2010. While in local nighttime, Ne and Te exhibited relatively weak positive correlation with R being about 0.6 at low latitudes, however no correlation beyond latitudes of 25° was obtained.  相似文献   

12.
平流层臭氧和辐射场的季节分布特征   总被引:1,自引:1,他引:1  
利用美国NCAR化学气候耦合模式WACCM3对平流层温度场、风场、臭氧及辐射场进行了模拟.结果表明,在适宜飞艇长期驻留的准零风层高度20~22km(对应大气压强范围为50~30hPa,以下均采用气压值表征对应大气高度),7-8月风速小于5m·s-1的风带可长期稳定在40°N以北.臭氧空间分布显示,在30hPa气压高度处中国地区臭氧浓度出现了带状分布,30hPa高度以下低纬度地区臭氧浓度低于中纬度地区.平流层太阳加热率的时空变化表明,在平流层上层,太阳加热率可达100×10-6K·s-1,而在平流层下层,只有10×10-6K·s-1.6-8月中国区域的太阳加热率大于9月;在100~30hPa高度内,中纬度地区太阳加热率高于低纬度地区,在30hPa高度以上,低纬度地区太阳加热率高于中纬度地区;8-9月30~40hPa高度处,太阳加热率的空间变化较小.在30hPa高度上,太阳加热率在40°N昼夜变化最大;50hPa高度处,太阳加热率的昼夜变化小于30hPa高度处,而且白天太阳加热率出现极大值的纬度明显靠北.平流层低纬度地区的长波加热率小于中纬度地区.青藏高原由于地形特殊,其6-7月的臭氧浓度、太阳加热率和长波加热率均小于同纬度其他地区.   相似文献   

13.
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes.  相似文献   

14.
We studied the cyclic evolution of the latitudinal distribution of solar coronal active regions based on daily images from SOHO EIT for the period 1995–2017. Fully automated software was used, which included the following steps: initial preparation of images in the data series, normalization of histograms and correction of limb brightening, segmentation of images using threshold intensity values obtained from their histograms, scanning of segmented images in heliographic coordinates and obtaining profiles of latitudinal distribution of coronal active regions for each image of the data series. From the output data, we obtained a temporary change in the latitudinal distribution profiles and the migration of activity centers on the solar disk. From the period of minimum activity to the next minimum in both hemispheres, activity centers begin to migrate from high latitudes towards the equator. At the same time, the general center of activity repeatedly changes the direction of migration. The latitudinal distribution of the so-called presence factor of coronal active regions closely resembles the magnetic butterfly diagram, which proves their direct causal relationships. Variations in the presence factor of coronal active regions are correlated with cyclic variations in the sunspot daily numbers.  相似文献   

15.
An X2/2B level solar flare occurred on 12 August, 1989, during the last day of the flight of the Space Shuttle Columbia (STS-28). Detectors on the GOES 7 satellite observed increased X-ray fluxes at approximately 1400 GMT and a solar particle event (SPE) at approximately 1600 GMT. Measurements with the bismuth germanate (BGO) detector of the Shuttle Activation Monitor (SAM) experiment on STS-28 showed factors of two to three increases in count rates at high latitudes comparable to those seen during South Atlantic Anomaly (SAA) passages beginning at about 1100 GMT. That increased activity was observed at both north and south high latitudes in the 57 degrees, 300 kilometer orbit and continued until the detector was turned off at 1800 GMT. Measurements made earlier in the flight over the same geographic coordinates did not produce the same levels of activity. This increase in activity may not be entirely accounted for by observed geomagnetic phenomena which were not related to the solar flare.  相似文献   

16.
The state of art of ground-based cosmic-ray research from its discovery to present is reviewed. After discovery of cosmic rays by Hess in 1912, the nature of the primary and secondary radiation was established from recordings by a variety of instruments, sensitive to various components of cosmic rays and operated at different latitudes, longitudes and altitudes, including instruments carried by balloons. The IGY formalized international co-operation and coordinated study of cosmic rays, which is vital for meaningful interpretation of cosmic-ray data. Data collected at different geographic locations require an effective cutoff rigidity as a data ordering parameter. This parameter is obtained from tracing trajectories of primary cosmic rays in the Earth’s magnetic field. After 50 years the world’s neutron monitor network remains still the backbone for studying intensity variations of primary cosmic rays in the rigidity ranges between 1 and 15 GV, associated with transport and with transient events. Also the penetrating muon and neutrino components of secondary cosmic rays have a long history of recording and fundamental problem investigations. Valuable data about composition and spectrum of primary cosmic rays in ever increasing high-energy regions have been obtained during the years of investigations with various configurations and types of extensive air shower detectors. The culture of personal involvement of the physicist in carrying out experiments and data acquisition characterized the continued vitality of cosmic-ray investigations ranging from its atmospheric, geomagnetic and heliospheric transport through to its solar and astrophysical origins.  相似文献   

17.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

18.
The seasonal and solar activity variation of the post sunset F- region zonal plasma drift, at the magnetic equatorial region over Indian longitudes is analyzed using the Republic of China Satellite-1 data from January 2000 to April 2004. The post sunset F- region zonal drifts are observed to be higher in the years of high solar activity in comparison with low solar activity, while seasonally the drifts are minimum in summer with much higher values in other seasons. The seasonal and solar activity variations of zonal plasma drift are attributed to the corresponding variations in the neutral winds. The dependences of the F region peak vertical drift on the zonal plasma drift at 18.5 IST (Indian Standard Time) and the time difference of the conjugate points sunset times, are quantitatively analyzed. Further an integrated parameter (incorporating the above mentioned two independent factors), which is able to predict the peak vertical drift and growth rate of Rayleigh Taylor instability is proposed. The other major outcome of the study is the successful prediction of the Equatorial Spread F (ESF) onset time and duration using the new integrated parameter at 18.5 IST. ESF irregularities and associated scintillations adversely affect communication and navigation systems. Hence, the present methodology for the prediction of the characteristics of these nocturnal irregularities becomes relevant.  相似文献   

19.
太阳活动与空间坏境紧密相关,大耀斑会引起空间环境的剧烈扰动.太阳活动预报便成空间环境预报的基本依据.太阳预报水平长期以来提高缓慢,太阳物理学家皆有共识,寄希望于物理预报的进展,但举步维艰.近来,“太阳活动的行星潮汐效应”的研究取得了新进展1)[1,2],引潮力可以触发耀斑,从而,利用这类效应发展物理预报技术,呈现良好前景.“太阳耀斑发生率按行星引潮力的分布”已有几个具体结果,表面看来,其间似乎有出人需予澄清.1972年,董土仑和林柏森发现1958-1968年94个质子耀斑的发生率在其目面经度处(活动经度上)技引潮力…  相似文献   

20.
The study of the possible effect of solar variability on living organisms is one of the most controversial issues of present day science. It has been firstly and mainly carried on high latitudes, while at middle and low latitudes this study is rare. In the present review we focused on the work developed at middle and low geomagnetic latitudes of America. At these geomagnetic latitudes the groups consistently dedicated to this issue are mainly two, one in Cuba and the other in Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号