共查询到20条相似文献,搜索用时 15 毫秒
1.
S.R. Coriell R.F. Boisvert J.I. Mickalonis M.E. Glicksmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(5):95-101
The stability of the flow between two vertical, infinite, rigid, coaxial cylinders held at different temperatures is analyzed by linear stability theory. For a Prandtl number of 22.8 and a radius ratio of 0.02, the flow is unstable to an axisymmetric perturbation at a critical Grashof number of 2150; the wave speed of the instability is comparable to the maximum velocity of the unperturbed flow. When the rigid outer cylinder-fluid interface is replaced by a crystal-melt interface which can change shape, two new modes of instability occur at lower Grashof numbers. There is an asymmetric instability with a critical Grashof number of 180 and an axisymmetric instability with a critical Grashof number of 460; for both of these modes the wave speed of the instability is several orders of magnitude smaller than the unperturbed flow velocity.These calculations were motivated by and are in general agreement with our recent experiments on succinonitrile. A long vertical cylindrical sample of succinonitrile was heated by an electrical current through a coaxial vertical wire so that a vertical melt annulus formed between the coaxial heater and the surrounding crystal-melt interface. Above a critical Grashof number of circa 200, a helical crystal-melt interface formed which rotated steadily about the cylinder axis; the wave speed was several orders of magnitude less than the base flow velocity. 相似文献
2.
A. Rouzaud D. Camel J.J. Favier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(5):3-9
A concentrated binary system (Ge-Si) and a dilute one (Ge-Ga) have been solidified at 1 g, in a new vertical Bridgman furnace where radial thermal gradients have been minimized. Very different solutal boundary layer extents (δGe-Si = 3 cm, δGe-Ga = 2.5 mm) obtained for both systems solidified in the same thermal conditions are explained by simple analytical hydrodynamic models. It is demonstrated that :1. The convective transport of Ga in the Ge-Ga system is due to the unavoidable residual horizontal thermal gradients associated with discontinuity of thermal properties at the solid-liquid interface.2. The larger boundary layer extent observed for Ge-Si and the corresponding pure diffusive transport is the result of the stabilizing effect of the longitudinal solutal gradient in this system.Thus, in the case of dilute systems, convective effects can only be cancelled through a reduction of the gravity level. On the opposite, pure diffusive solute transport can be achieved in the vertical configuration a 1 g in the case of concentrated systems where a stabilizing solutal effect is operating. 相似文献
3.
J. Šťastna F. Vodák Č. Bárta A. Tříska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(5):167-169
The crystal growth from a liquid can be studied by methods of non-equilibrium thermodynamics of a discontinuity surface. These methods are used to derive the dependence of the crystalization velocity on transport and surface phenomena across and along an interface solid-liquid and on the acceleration of gravity. 相似文献
4.
S Fujieda Y Mori A Nakazawa Y Mogami 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):537-543
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field. 相似文献
5.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1988,8(12):167-170
First results in the area of studying the influence of gravity field on the degree of ordering of directionally solified eutectict are presented. As the model complex-forming melts, PbCl2 and its eutectic with AgCl was chosen. Directional solidification of the mentioned eutectic was realised under conditions of zero, normal and increased gravity. It was shown that increasing level of gravity results in a marked improvement of the degree of spacial ordering of the lamelar structure. 相似文献
6.
G. Nagel K.W. Benz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(5):23-26
Single crystals of binary III-V-semiconductors, e.g. GaAs or InP, are important basic materials for optoelectronic devices, e.g. LED's and lasers. Device production needs highly perfect substrate crystals with low defect densities and homogeneous dopant distributions. In our experiment we applied the Travelling-Heater-Method to grow the III-V compound GaSb. The aim of this research project was to improve the crystal quality by investigating convective transport phenomena and the origins of dopant inhomogeneities under earth and space conditions. Earth grown crystals show strong dopant variations mainly due to convective flow phenomena. The preliminary result of our SPACELAB 1 experiment reveals an increase of dopant homogeneity in the space grown crystal because of the absence of natural convection under reduced gravity. 相似文献
7.
Qile Zhao Jing Guo Zhigang Hu Chuang Shi Jingnan Liu Hua Cai Xianglin Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%–30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is found that our solutions are, in general, consistent with others in the spatial pattern. The water storage variations of the Amazon, Chari and Ganges river basins have also been computed. The variations computed with the NPARB approach are closer to those produced by JPL and DEOS solutions, while the variations produced with the NPESS approach are in good agreement with those produced by the CSR and GFZ solutions. A simulation study is implemented with considering realistic noise and low-frequency error. The two approaches are used to recover the true model. The NPESS solution appears closer to the true one. Therefore we are inclined to estimate the nuisance parameters simultaneously with the geopential coefficients. 相似文献
8.
J Neubert A Schatz B Bromeis A Linke-Hommes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):265-271
The development of embryonic and larval stages of the South African Toad Xenopus laevis D, was investigated in hyper-g up to 5 g (centrifuge), in simulated 0 g (fast-rotating clinostat), in alternating low g, hyper-g (parabolic flights) and in microgravity (Spacelab missions D1, D-2). The selected developmental stages are assumed to be very sensitive to environmental stimuli. The results showed that the developmental reaction processes run normal also in environments different to 1 g and that aberrations in behavior and morphology normalize after return to 1 g. Development, differentiation, and morphology of the gravity perceiving parts of the vestibular system (macula-organs) had not been affected by exposure to different g-levels. 相似文献
9.
B. Roux H. Ben Hadid P. Laure 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1988,8(12):225-249
Modelisation and solution of heat and mass transfer problems relevant for material processing are generally hard to be handled, as they often involve 3D unsteady flows, viscous mixtures, phase changes, moving liquid-solid fronts, deforming liquid-gas interfaces, etc.… For space applications, material processing benefits of reduced buoyancy convection but can be faced to a strongly increased complexity due to variable g, mainly in manned flight.
Computational techniques used to analyse fluid motions in material processing, accounting for free surface, crystallization front and bulk convection in melt, are reviewed with emphasis to directional crystallization. Hydrodynamics stability and bifurcation analysis are shown to be useful complementary tools for correlating data, and for a better understanding of the physical laws. This last point will be illustrated in the case of the onset of oscillations in metallic melts. 相似文献
10.
M.D. Ross 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):305-314
Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on Earth. Thus, it must have been a major force in shaping livimg things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversification of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection. 相似文献
11.
T Takakura E Goto M Tanaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):255-258
An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48 g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degrees C under an average light condition of 110 micromol/m2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under microgravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth. 相似文献
12.
13.
O V Lobachevska O T Demkiv R T Ripetskyj 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1141-1144
During the growth and development of the sporophytic capsules of some moss species, negative gravitropism is changed for a positive one. Horizontal clinostat rotation induced unregulated growth of the sporophytes and their twisting; some of sporophytes remained straight, however. It has been established that the change of the gravitropic reaction is related to capsule formation and to the redistribution of amyloplast cells of the sporophyte graviperception zone. 相似文献
14.
D A Mesland 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):15-25
Since the first flight of the ESA Biorack on the German Spacelab Mission D1 in 1985 evidence has been obtained that biological cells and small unicellular organisms function differently under conditions of microgravity. However, there is still lack of scientific proof that these effects are caused by a direct influence on the cells in the weightlessness condition. The question how normal gravity may play a role in cellular activity is being addressed and the results show that gravity may provide important signals during certain state transitions in the cell. These would be gravity-sensitive windows in the biological process. Also, by amplification mechanisms inside the cell, the cell may assume a state that is typical for normal gravity conditions and would change in microgravity. Experimental tools are discussed that would provide the conditions to obtain evidence for direct action of gravity and for the possible existence of gravity-sensitive windows. 相似文献
15.
C A Fuller T M Hoban-Higgins D W Griffin D M Murakami 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):399-408
The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine. 相似文献
16.
R. T. Ripetskyj N. A. Kit Ch. I. Chaban 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2005-2010
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata. 相似文献
17.
T.F. Tuan D. Papadopoulos A.W. Peterson R.M. Nadile 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):137-141
The effects of gravity waves on OH and 5577 0I emissions have been used to investigate (1) the possible production of “secondary” waves or “ripples” by a “primary” wave; (2) the possible application of such observed optical emissions for computing atmospheric parameters such as turbulence viscosity in the mesospheric regions. 相似文献
18.
R Hilbig R H Anken G Sonntag S Hohne J Henneberg N Kretschmer H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):835-841
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0 g to 2 g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs. 相似文献
19.
D.T.J. Hurle 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(5):43-50
It is well understood that temperature oscillations and fluctuations during melt growth give rise to fluctuating concentration of solute in the crystal — so-called solute (or impurity) striations. A major source of the temperature fluctuations is the transition to turbulence in the melt resulting from strong buoyancy and/or surface-driven flows. The interaction of these natural convective flows with any imposed rotation is of significance. The major factors causing flow transitions and particularly those which lead to time-dependent flows in Czochralski and float-zone melts will be briefly reviewed and the likely influence of a low-g environment considered. Theoretical analysis and experimental study of the response of the crystal-melt interface to such temperature fluctuations is reviewed and criteria for maximising crystal homogeneity discussed. 相似文献
20.
G.M Malacinski A.W Neff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):315-323
The development of animal systems is described in terms of a series of overlapping phases: pattern specification; differentiation; growth; and aging. The extent to which altered (micro) gravity (g) affects those phases is briefly reviewed for several animal systems. As a model, amphibian egg/early embryo is described. Recent data derived from clinostat protocols indicates that microgravity simulation alters early pattern specification (dorsal/ventral polarity) but does not adversely influence subsequent morphogenesis. Possible explanations for the absence of catastrophic microgravity effects on amphibian embryogenesis are discussed. 相似文献