共查询到20条相似文献,搜索用时 15 毫秒
1.
A.F. Hasler R. Mack A. Negri 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(6):105-113
The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated.Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the two satellites. A general solution for accurate height computation depends on precise navigation of the two satellites. Validation of the geosynchronous satellite stereo using high altitude mountain lakes and vertically pointing aircraft lidar leads to a height accuracy estimate of ± 500 m for typical clouds which have been studied. Applications of the satellite stereo include: 1) cloud top and base height measurements, 2) cloud-wind height assignment, 3) vertical motion estimates for convective clouds (Mack [13], [14]), 4) temperature vs. height measurements when stereo is used together with infrared observations and 5) cloud emissivity measurements when stereo, infrared and temperature sounding are used together (see Szejwach [15]).When true satellite stereo image pairs are not available, synthetic stereo may be generated. The combination of multispectral satellite data using computer produced stereo image pairs is a dramatic example of synthetic stereoscopic display. The classic case uses the combination of infrared and visible data as first demonstrated by Pichel [16]. Hasler [17], Mosher and Young [18] and Lorenz [19], have expanded this concept to display many channels of data from various radiometers as well as real and simulated data fields.A future system of stereoscopic satellites would be comprised of both low orbiters (as suggested by Lorenz and Schmidt [20], [19]) and a global system of geosynchronous satellites. The low earth orbiters would provide stereo coverage day and night and include the poles. An optimum global system of stereoscopic geosynchronous satellites would require international standarization of scan rate and direction, and scan times (synchronization) and resolution of at least 1 km in all imaging channels. A stereoscopic satellite system as suggested here would make an extremely important contribution to the understanding and prediction of the atmosphere. 相似文献
2.
Mauricio F. Araya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):283-287
This paper summarizes the main results, needs and perspectives on the use of Satellite Data Collection Systems (DCS) in the Antarctic Peninsula as derived from the operation of an experimental net of five Data Collection Platforms (DCPs) installed to collect meteorological data from remote sites, during the period 1978–1984. Main logistics problems have been solved and also the maintenance of a continuous data link along the year through Landsat (initially) and GOES satellites (actually). It is hoped to solve in the near future the remaining data quality problems on the DCP sensors. 相似文献
3.
R. Roth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):217-221
Climatological characteristics of cloud cover - means, variances, structure functions - previously computed for five years are compared with the results of a new test cloud cover data set of one year period. The effects on the cloud field of the Alps, the Carpathian basin and the land-ocean interface, further the seasonal changes of the general circulation are well reflected. The new test data set is based upon digitized data of one morning as well as one afternoon picture per day. Therefore some results are also obtained of the cloud cover variations during the day. 相似文献
4.
R. Róth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(4):319-322
Cloud amounts data of a five year period manually digitized from meteorological satellite imagery are used for cloud statistics over the European region. Spatial and temporal structure functions of the cloud field are computed and analysed for the seasons. The results give a numerical representation of the effects of the general circulation and the geographical-physical conditions on cloudiness. 相似文献
5.
A.D. Belmont 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):115-123
Although the Meteorological Rocket Network operated by or in cooperation with the United States has decreased from fourteen to nine stations in the past five years, there have been many observations accumulated in the ten years since CIRA 1972 was prepared with data up to 1969. The mean, annual and semiannual variations of temperature and wind are presented and special attention is directed to the polar semiannual wave. The results are compared with the Oxford SCR-PMR five-year data set, the CDC-SCR seven-year data, and CIRA 1972 with respect to both temperature and zonal winds, as far as presently available. The agreement among the data sets is very good. 相似文献
6.
Joachim H. Joseph 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):213-216
The morphology of fair weather Cumulus cloud field over several ocean areas distributed globally has been studied using LANDSAT data. Distribution functions of cloud size, spacing, perimeter and other relevant parameters have been derived, as well as their correlations and moments.Examples of distribution functions of cloud size, cloud spacing and fractal dimension of the cloud fields over oceanic areas are given and applied to several problem in Cu convection. 相似文献
7.
L.I. Dorman A.V. Belov E.A. Eroshenko L.I. Gromova N. Iucci A.E. Levitin M. Parisi N.G. Ptitsyna L.A. Pustilnik M.I. Tyasto E.S. Vernova G. Villoresi V.G. Yanke I.G. Zukerman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2530-2536
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(4):747-753
Flood forecasting has long been a major topic of hydrologic research. Recent events and studies indicate that the success of flood forecasting in Taiwan depends heavily on the accuracy of real-time rainfall forecasting. In this study, we demonstrate a multi-spectral spatial convolution approach for real-time rainfall forecasting using geostationary weather satellite images. The approach incorporates cloud-top temperatures of three infrared channels in a spatial convolution context. It not only characterizes the input–output relationship between cloud-top temperature and rainfall at the ground level, but also is more consistent with physical and remote sensing principles than single-pixel matches. Point rainfall measurements at raingauge sites are up-scaled to pixel-average-rainfall by block kriging, then related to multi-spectral cloud-top temperatures derived from Geostationary Meteorological Satellite images by spatial convolution. The kernel function of the multispectral spatial convolution equation is solved by the least squares method. Through a cross-validation procedure, we demonstrate that the proposed approach is capable of achieving high accuracy for 1- to 3-h-lead pixel-average-rainfall forecasting. 相似文献
9.
D. Kucharski H.-C. Lim G. Kirchner F. Koidl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period. 相似文献
10.
R.K. Gupta N.N. Murthy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):385-394
The paper discusses the digital image processing system for NOAA/AVHRR data including Land applications — configured around VAX 11/750 host computer supported with FPS 100 Array Processor, Comtal graphic display and HP Plotting devices; wherein the system software for relational Data Base together with query and editing facilities, Man-Machine Interface using form, menu and prompt inputs including validation of user entries for data type and range; preprocessing software for data calibration, Sun-angle correction, Geometric Corrections for Earth curvature effect and Earth rotation offsets and Earth location of AVHRR image have been accomplished. The implemented image enhancement techniques such as grey level stretching, histogram equalization and convolution are discussed. The software implementation details for the computation of vegetative index and normalized vegetative index using NOAA/AVHRR channels 1 and 2 data together with output are presented; scientific background for such computations and obtainability of similar indices from Landsat/MSS data are also included. The paper concludes by specifying the further software developments planned and the progress envisaged in the field of vegetation index studies. 相似文献
11.
Vivien Moore 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):185-191
The International Ultraviolet Explorer (IUE) has provided both improved spectral resolution and some spatial resolution for UV observations of Jupiter. Previous satellite observations have produced albedo curves for Jupiter showing the influence of Rayleigh scattering, and of some absorber(s) shortward of 2500Å on the UV spectrum. Constraints on the abundance of several minor constituents of the Jovian atmosphere were derived from the OAO-2 data. The IUE low dispersion data has a resolution of 8Å, making it possible to detect individual molecular features. A series of C2H2 absorptions in the 1750Å region have been identified, and indications of NH3 absorptions are present in the 1950Å region. 相似文献
12.
D. Kucharski G. Kirchner H.-C. Lim F. Koidl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The high repetition rate Satellite Laser Ranging (SLR) system developed in Graz, Austria, measures ranges to the High Earth Orbiting satellites Etalon-1 and Etalon-2 with the millimeter accuracy. The 2 kHz repetition rate of the laser and the relatively high return rates allow to use the SLR data to calculate the spin parameters of the Etalon satellites. The analysis of the 10 years (October 2003–September 2013) of the SLR data gives trends of the spin axes orientation (J2000 Inertial Reference Frame): 相似文献
13.
Istvan Laszlo Pubu Ciren Hongqing Liu Shobha Kondragunta J. Dan Tarpley Mitchell D. Goldberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(11):1882-1893
The paper presents a high-level overview of current and future remote sensing of aerosol and shortwave radiation budget carried out at the US National Oceanic and Atmospheric Administration (NOAA) from the US Geostationary Operational Environmental Satellite (GOES) series. The retrievals from the current GOES imagers are based on physical principles. Aerosol and radiation are estimated in separate processing from the comparison of satellite-observed reflectances derived from a single visible channel with those calculated from detailed radiative transfer. The radiative transfer calculation accounts for multiple scattering by molecules, aerosol and cloud and absorption by the major atmospheric gases. The retrievals are performed operationally every 30 min for aerosol and every hour for radiation for pixel sizes of 4-km (aerosol) and 15- to 50-km (radiation). Both retrievals estimate the surface reflectance as a byproduct from the time composite of clear visible reflectances assuming fixed values of the aerosol optical depth. With the launch of GOES-R NOAA will begin a new era of geostationary remote sensing. The Advanced Baseline Imager (ABI) onboard GOES-R will offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites. The ABI aerosol algorithm currently under development uses a multi-channel approach to estimate the aerosol optical depth and aerosol model simultaneously, both over water and land. Its design is strongly inspired by the MODIS aerosol algorithm. The ABI shortwave radiation budget algorithm is based on the successful GOES Surface and Insolation Product system of NOAA and the NASA Clouds and the Earth’s Radiant Energy System (CERES), Surface and Atmospheric Radiation Budget (SARB) algorithm. In all phases of the development, the algorithms are tested with proxy data generated from existing satellite observations and forward simulations. Final assessment of the performance will be made after the launch of GOES-R scheduled in 2012. 相似文献
14.
X. Luo B. Heck J.L. Awange 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%. 相似文献
15.
Paul S. Butterworth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(9):177-184
In April 1972 OAO-2 obtained broadband filter measurements of the Galilean satellites from 2100 to 4300 Å. All four bodies were shown to have low albedos declining towards shorter wavelengths, thus constraining the proportions of their surfaces that could be covered by reflective frosts. Although the vast data return from Voyager spacecraft has for the first time permitted a detailed comparison of Galilean satellites with terrestrial planets, it has not removed the need for continuing long time-base observations of the former. Since January 1978, IUE has repeatedly obtained Galilean spectra within the range 1150 to 3200 Å. Observations of Io have placed an upper limit on the global abundance of SO2 in its atmosphere. Spectral variations with phase have allowed spatial mapping of surface reflectance in the case of Io, and may enable volcanic activity to be monitored. 相似文献
16.
R. Mack A.F. Hasler E.B. Rodgers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(6):143-151
Results are presented to show the application of GOES stereoscopy to the study of hurricanes and tornadic thunderstorms. Stereoscopic cloud top height contour maps were constructed to observe the structural evolution of two hurricanes: Frederic, 12 September 1979 and Allen, 8 August 1980 and a tornadic thunderstorm complex over Oklahoma on 2–3 May 1979. Stereoscopic height contours of Hurricane Allen show a very intense and symmetric storm with a circular shaped Central Dense Overcast (CDO) with an average height of 16.5 km. Height contours of Hurricane Frederic show a preferred region for convection with an explosive exhaust tower reaching a maximum height of 17.8 km. A technique for estimating tropical cyclone intensity using GOES stereoscopic height and infrared temperature information is also presented. Utilizing short interval (3-min) GOES stereoscopic data from 2 May 1979 and 9 May 1979 (SESAME days), cloud top ascent rates were measured and used in determining the intensity of growing convective cells. Results show vertical motions ranging from 4.4 m s?1 for a moderate storm to 7.7 m s?1 for an intense storm. These results compare well in magnitude with growth rates determined from simultaneous GOES infrared observations and previous estimates of visual and radar echo top growth rates of other thunderstorms. 相似文献
17.
J. Bartholic S. Gage A. Goshtasby C. Mason 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(8):71-75
Changes in surface temperature resulting from the activities of man are evaluated using meteorological satellite (NOAA and HCMM) and aircraft data. Study sites were located in Florida and Michigan. Thermal data showed that day surface temperatures over large areas could be increased by 10–15°C by modifications resulting from agricultural practices. Changes in reflected solar radiation as a function of agricultural practices were detectable using HCMM data. 相似文献
18.
Ana Karabatić Robert Weber Thomas Haiden 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The importance of high resolution meteorological analysis of the atmosphere increased over the past years. A detailed analysis of the humidity field is an important precondition for a better monitoring of local and regional extreme precipitation events and for forecasts with improved spatial resolution. For this reason, the Austrian Meteorological Agency (ZAMG) is operating the spatial and temporal high resolution INCA system (Integrated Now-casting through Comprehensive Analysis) since begin of 2005. Errors in this analysis occur mainly in the areas of rapidly changing and hard to predict weather conditions or rugged topography with extreme differences in height such as the alpine area of Austria. The aim of this work is to provide GNSS based measurements of the tropospheric water vapour content with a temporal resolution of 1 h and a temporal delay of less than 1 h to assimilate these estimates into the INCA system. Additional requirement is an accuracy of better than 1 mm of the precipitable water (PW) estimates. 相似文献
19.
L. Habash Krause A. Franz A. Stevenson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
This paper presents an overview of the mathematical foundations for techniques in Exploratory Data Analysis (EDA) for the purpose of investigating the relationships among the numerous variables in large sets of multivariate space weather data. Specifically, we cover techniques in Principal Components Analysis (PCA) and Common Factor Analysis (CFA). These techniques are illustrated using space weather activity indices collected during the year 2002 and the corresponding noon-time hmF2 data from the International Reference Ionosphere (IRI). A CFA is used to categorize the activity indices, and a PCA is used to derive two macro-indices of activity to ascertain the strength of solar and geomagnetic activity. These macro-indices are then used to compare and contrast IRI’s noon-time hmF2 values at six different geographic stations. It was found that the correlation between hmF2 and the macro-indices more accurately represented the variation of this correlation with latitude found in previous studies than if we used an isolated conventional index, such as SSN and AE. We also found that the daily maximum value of the Polar Cap Index was dependent on both solar and geomagnetic activity, but the closely-related cross-Polar Cap Potential was solely associated with elevated levels of geomagnetic activity, which is a unique result compared to previous studies. We argue that the discrepancy can be explained by the difference in experiment designs between the two studies. This paper demonstrates the usefulness of EDA in space weather studies of large multivariate data sets. 相似文献
20.
C.V. Ely I.S. Batista M.A. Abdu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This study aims to validate the electron density profiles from the FORMOSAT-3/COSMIC satellites with data from Digisondes in Brazil during the low solar activity period of the years 2006, 2007 and 2008. Data from three Brazilian Digisondes located in Cachoeira Paulista (22.7°S, 45°W), São Luís (2.5°S, 44.2°W) and Fortaleza (3.8°S, 38°W) were used in the comparisons. Only the profiles whose density peak have been obtained near the stations coordinates were chosen for the comparison. Although there is generally good agreement, some cases of discrepancies are observed. Some of these discrepancies cannot be explained simply by the differences in the position and local time of the measurements made by the satellite and the ground-based station. In such cases it is possible that local conditions, such as the presence of a trans-equatorial wind or electron density gradients, could contribute to the observed differences. Comparison of the F2 layer peak parameters, the NmF2 and hmF2, obtained from the two techniques showed that, in general, the agreement for NmF2 is pretty good and the NmF2 has a better correlation than hmF2. Cachoeira Paulista had the worst correlation for hmF2 possibly because this station is situated in the region under the influence of the equatorial ionization anomaly, a region where it is more difficult to apply the RO technique without violating the spherical symmetry condition. 相似文献