首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the First Global GARP Experiment (FGGE), global determinations of mass and moisture were made from TIROS-N (and NOAA-6) infrared and microwave sounding radiance measurements. At NESS in Washington, the meteorological data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE level II-b data sets intended for application to large scale numerical analysis and prediction models. High horizontal resolution (50 km) sounding data sets are being produced by NESS and the Space Science and Engineering Center at the University of Wisconsin and at the NASA/Goddard Space Flight Center for special case studies of the “Special Observing Periods” of FGGE.Results are presented to display the characteristics of the sounding data at different resolutions. For the low horizontal resolution data, an evaluation is shown by comparisons of global analyses made only from satellite soundings over land and sea, and those made operationally by the National Meteorological Center, which excluded satellite sounding data over continental areas, but included all conventional data sources. For the high horizontal resolution sounding data, results are presented to demonstrate the delineation of small scale temperature and moisture features which are consistent with the meteorological processes involved.  相似文献   

2.
The scientific objectives of the FGGE and the observational requirements prescribed for the experiment are reviewed. The performance of the observational systems implemented for the operational year is summarised for each component and the extent to which the composite observing system met the requirements is assessed. It is concluded that although the formal requirements were not strictly reached over the whole globe, nevertheless exceptional enhancement was achieved in the areas normally observed very inadequately and it is judged that the final data sets will allow the scientific objectives of the FGGE to be attained. This conclusion depends crucially on the satellite contributions, especially those of TIROS-N.  相似文献   

3.
During the planning of the FGGE, certain objectives were set for various aspects of the performance of the Drifting Buoy Observing System, such as measurement accuracy, coverage and buoy lifetime. When preliminary results from the actual buoy array are reviewed it can be seen that these objectives were clearly satisfied for buoy reliability and sea temperature, and nearly satisfied for barometric pressure, but that complete coverage of the 20° to 65°S zone was never achieved. Nevertheless the performance of the array exceeded all expectations.  相似文献   

4.
The U.S. launched the first of its new series of polar-orbiting, operational satellites, named TIROS-N, on 13 October 1978. The second, named NOAA-A, was launched on 27 June 1979. Together they comprise the operational system since from an average altitude of 840 km two satellites are required to provide global coverage in the equatorial zone. Operational products for FGGE (atmospheric temperature profiles, sea surface temperature analysis, and other data) are discussed and compared with prior performance. New uses in support of oceanology (Service ARGOS) are described.  相似文献   

5.
Synoptic-scale “moisture bursts” are defined, based on infrared GOES imagery, and their synoptic climatology is developed. Quantitative analysis of satellite-derived individual channel radiance data and vertical eigenfunctions of complete channel data yield rich structural detail; these details do not appear in FGGE analyses in regions void of conventional meteorological data.  相似文献   

6.
7.
High-quality multispectral measurements from satellites, and the recent development of multiple-window techniques to correct infrared brightness temperatures for atmospheric attenuation, have enabled marked improvements in global mapping of sea surface temperatures. The 4-km resolution data are in two visual bands and three atmospheric windows in the thermal infrared from the advanced Very High Resolution Radiometer (AVHRR) on NOAA's operational polar satellites. Various threshold and/or spatial homogeniety tests are applied to small data arrays to discriminate nominally cloud-free samples for subsequent processing. Tests of the multi-channel equations against independent buoy data gave bias = 0.42C and scatter = 0.62C. Global statistical comparisons with ships indicate significant improvements in accuracy and coverage over previous satellite-derived surface temperatures.  相似文献   

8.
利用亚洲、澳大利亚地区8个电离层观测台站的F2层临界频率f0F2的历史观测数据,考察了NeQuick模式预报电离层基本参数f0F2在亚太扇区的适应性.对比分析表明,此模式能比较好地预测各地的F2层临界频率,其绝对误差在南半球各站相对北半球各站较大,太阳活动高年相对太阳活动低年较大,春秋季相对夏冬季较大.其误差均方根在太阳活动高年相对太阳活动低年较大.   相似文献   

9.
The United States supported the First GARP Global Experiment (FGGE) by the use of three geostationary satellites: GOES-East, located at 75°W longitude, GOES-West at 135°W longitude, and, through a special cooperative effort by the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, and the European Space Agency, GOES-Indian Ocean at 58°E longitude. During the FGGE Operational Year, the GOES-East coverage was provided, in turn, by GOES-2, SMS-1, and SMS-2. The GOES-West coverage was provided by GOES-3, and GOES-1 served at the GOES-Indian Ocean location. Satellite and instrument performance was generally satisfactory during that period except for the loss of infrared data from the Indian Ocean GOES for an aggregate of 31 days due to intermittent operation of the sensor. From the GOES-East and GOES-West data, the National Environmental Satellite Service produced cloud motion vectors for 0000, 1200, and 1800 GMT daily, numbering in total about 1400 vectors per day. High resolution wind vectors at the rate of somewhat under 3000 daily were derived from the data from all three satellites in the tropical zone bounded by 15°N and 15°S latitude by the University of Wisconsin. In addition to their contributions to the FGGE research data sets, these three satellites provided other real-time benefits and services.  相似文献   

10.
Overlap of coverage of the five geostationary satellites has allowed an intercomparison of the FGGE cloud tracked winds. No attempt was made during FGGE to standardize the cloud tracking techniques. In spite of this potential for differences between data sets, the compatability of the various cloud wind data sets was generally quite good. The vector magnitude differences between nearly co-located vectors showed similar cumulative frequency statistics for all data producers. A study of systematic biases which could affect a global wind analysis of any given synoptic period showed that image alignment errors caused less than 2 m s?1 bias for all data producers except the NESS high level winds which had an average bias of slightly greater than 3 m s?1. This appears to be caused by the manual alignment of images in the movie loops. Height bias studies showed the Japanese winds to be higher than other data producers by as much as 100 mb for both the high and low levels winds. Height biases appear to be caused by the differences in cloud wind height assignment procedures.  相似文献   

11.
一种电离层TEC格点预测模型   总被引:1,自引:1,他引:0       下载免费PDF全文
基于分析时间序列数据的门限控制单元(GRU)神经网络模型,利用电离层TEC网格点历史数据、太阳活动指数、地磁活动指数作为预测因子,提出一种高精度电离层TEC格点预测模型.对全球60个网格点的数据进行了模型预测和对比实验,得到北半球平均相对精度的均值为83.96%,高于南半球的73.60%,表明预测模型在北半球的适应性更...  相似文献   

12.
The International Reference Ionosphere (IRI) empirical model provides valuable data for many fields including space and navigation applications. Since the IRI model gives the ionospheric parameters in the altitude range from 50?km to 2000?km, researchers focused on the IRI-PLAS model which is the plasmasphere extension of the IRI model. In this study, Total Electron Content (TEC) prediction performance of the IRI-PLAS model was examined at a global scale using the location of globally distributed 9 IGS stations. Besides the long term (01.01.2015–31.12.2015) behavior of the model, TEC predictions during the equinox and solstice days of 2014–2017 were also tested. IRI-PLAS-TEC values were examined in comparison with GPS-TEC data. Hourly interval of yearly profile exhibits that when the geomagnetic and solar active days are ignored, differences between IRI-PLAS-TEC and GPS-TEC are rather small (~2–3 TECU) at stations in the northern hemisphere, generally ~4–5 TECU level at the southern hemisphere stations and reaching above 10 TECU for few hours. While the IRI-PLAS-TEC generally overestimates the GPS-TEC at southern hemisphere stations during quiet days, the model-derived TEC underestimates GPS-TEC during solar active days. IRI-PLAS-TEC and GPS-TEC values exhibit similar trend for the equinoxes 21 March and 23 September which refer equivalent conditions.  相似文献   

13.
To meet the scientific objectives of the Global Weather Experiment (FGGE) the availability of the detailed vertical wind structure especially in the tropics was considered to be crucial. The Tropical Wind Observing Ships (TWOS) System was implemented to supplement the land-based data during FGGE. Many of the ships which participated in this observing system did not have upper-air observing equipment on board. A Navaid-based sounding system was developed and purchased for these ships through WMO co-ordination and international funding.The paper describes the principles of the Navaid windfinding technique, the hardware solution for the WMO FGGE Navaid Sounding System, the implementation of Navaid data collection and processing, and an assessment of the quality of data acquired.  相似文献   

14.
Three topics are considered, all resulting from the desire to maximize the utilization and overall quality of the FGGE data sets.First, the production of Level III-b oceanographic and meteorological analyses in the FGGE format has been undertaken by the Fleet Numerical Oceanography Center. The oceanographic data, in particular the sub-surface oceanographic data, is a unique addition to the FGGE data base.Next, the FGGE Level II-b data set is the most comprehensive set of synoptic-scale meteorological data ever assembled to date. Under development is a program aimed at compacting and restructuring the Level II-b data according to observing systems, so that the data will be more readily usable and more economical for users interested in smaller and/or different portions of the total FGGE Level II-b data set.Lastly, as a result of the United States pre-FGGE Data Systems Tests, a need was indicated for a special effort to edit and enhance satellite soundings and cloud motion wind data during FGGE. A formal program to carry out such an effort has been established jointly by NASA, NOAA, and the University of Wisconsin.  相似文献   

15.
Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.  相似文献   

16.
With the development of Global Navigation Satellite System (GNSS), the detection of precipitable water vapor (PWV) using the GNSS atmospheric sounding technique becomes a research interest in GNSS meteorology. In the conversion of zenith tropospheric delay (ZTD) to PWV, the weighted mean temperature (Tm) plays a crucial role. Generally, the Tm estimated by the linear regression models based on surface temperature (Ts) cannot meet the requirement for global use, and the accuracy of Tm derived from the empirical models is limited. In this study, a new Tm model, named GGTm-Ts model, was developed using the global geodetic observing system (GGOS) atmosphere Tm data and European Centre for Medium-Range Weather Forecasts (ECMWF) data from 2011 to 2015. Resting upon a global 2.5°*2° grid of coefficients of Tm-Ts linear function, the new model can provide Tm at any site in two modes, one for the case with measured Ts provided, i.e., the accurate mode, the other for the case that Ts provided by a subroutine, i.e., the normal mode. The performance of GGTm-Ts model was assessed against the Bevis formula, GPT2w and GPT2wh model using different data sources in 2016-the GGOS atmosphere and radiosonde data. The results show that the GGTm-Ts model in accurate mode achieves best performance with an improvement of 46.9 %/15.3 %, 37.8 %/19.5 % and 34.4 %/14.2 % over other three models in the GGOS atmosphere/radiosonde comparison. For the normal mode, the GGTm-Ts model outperforms the GPT2w model and achieves equivalence results with the GPT2wh model. Moreover, the impact of Tm on GNSS-PWV was analyzed to validate the performance of the GGTm-Ts model.  相似文献   

17.
Since 24 September 1978 global daily fields of temperature and geopotential height at 8 stratospheric pressure levels 70 to 0.4 mb (18–55 km) have been produced at the U.S. National Meteorological Center. Temperature profiles derived from NOAA operational satellites constitute the sole data source for the upper stratospheric levels 5, 2, 1, and 0.4 mb (35, 42, 48 and 55 km). Significant changes in upper stratosphere reported temperatures have accompanied each of the eight changes in either operational satellite or method of data processing. Comparisons with rocketsonde data from 1978 to 1986 show bias changes of 1 to 5 Celsius degrees at various levels. For detecting long term trends of ambient stratospheric temperature, adjustments based on rocket comparisons must be applied to the NMC fields. Lack of data at north polar latitudes and in the southern hemisphere limits comprehensive characterization of temperature uncertainty. We discuss in detail our ability to characterize temperature uncertainty of the NMC stratospheric analyses. We specifically discuss our ability to detect a trend in the middle stratosphere temperature of about 1.5 celsius degrees per decade, the amount of change indicated likely by current theoretical models.  相似文献   

18.
The atmospheric influence caused by the Martian permanent south CO2 ice cap is examined to improve the Global Mars Multiscale Model (GM3) to see if it can significantly improve the representation of south polar meteorology. However, the seasonal carbon dioxide ice in the polar regions is presented in the surface ice simulation by the Global Mars Multiscale Model but the model does not produce a permanent south CO2 ice cap, and the physics code must modify to capture the realistic physical such as ice process detail; probably makes a bias in terms of total CO2 ice and meteorological processes in the model aside from ice formation. The permanent south CO2 ice cap in the model can significantly improve the representation of south polar meteorology for example in predicted surface temperatures, surface pressures, horizontal and zonal winds over the south cap and possible initiation of dust storms at south polar region during the southern summer period.  相似文献   

19.
利用风云三号C星(FY-3C)微波温湿探测仪(MWHTS)的实测亮温数据,开展了中低纬度(40°S-40°N)区域海面气压反演研究.MWHTS 118.75GHz氧气通道的辐射亮温测量值与氧气气柱总量密切相关,可用于反演海面气压.根据辐射传输方程分析了MWHTS 8个氧气通道对海面气压的敏感性.结果表明,与位于氧气吸收带中心的通道相比,位于吸收带翼区的探测通道对海面气压的变化更敏感.基于神经网络方法建立了中低纬度海面气压反演算法,通过将反演结果与ERA-Interim再分析数据以及原位观测数据进行对比分析,发现建立的反演算法在中低纬度晴空、云天、雨天条件下,对海面气压的估计精度分别为2.0,3.0和3.5hPa.最后,开展了生成初期热带气旋的反演试验,结果表明反演的海面气压资料对热带低压的判别有一定帮助.   相似文献   

20.
捕风一号卫星是中国首次实现基于星载导航卫星反射信号测量(global navigation satellite system-reflection,GNSS-R)技术的气象卫星,采用新型L波段海面风场信息探测技术,在风场测量、海面飓风风速反演等方面为国家气象、防灾减灾等行业提供服务.从系统设计角度介绍了捕风一号卫星的总...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号