首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Our understanding of galactic cosmic ray (GCR) modulation has advanced greatly in the last three decades. However, we still need an appropriate knowledge of the GCR intensity gradient. Numerical simulations of the transport particle equation allow interpretation of cosmic ray intensities in the heliosphere. We use the numerical solution of the GCR transport equation during solar maximum epoch to compute the radial and latitudinal gradients. Our analysis indicates that adiabatic energy loss plays an important role in the radial distribution of GCR in the inner heliosphere, while in the outer region the diffusion and convection are the relevant processes. The latitudinal gradient is small.  相似文献   

2.
根据异常低的质子温度判据,从Heliosl和2飞船等离子体观测数据中(0.3-1AU)识别出大约160个行星际日冕物质抛射事件(ICME),并在统计意义上分析了ICME在内日球空间的传播和演化规律.  相似文献   

3.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

4.
Recent developments in the studies of interplanetary disturbances by scintillation (IPS) techniques are briefly reviewed. The turbulent post-shock region of an interplanetary disturbance produces transient enhancements in the scintillation level and the flow speed in many cases. An empirical method to determine three-dimensional angular distribution of propagation speed of the disturbance on the basis of IPS measurements of post-shock flow speeds is applied to 17 events which took place in 1978–1981. Among them, four representative examples including two events which were associated with disappearing solar filaments are described in detail. Several disturbances had oblate configurations; the latitudinal extent is smaller than the longitudinal extent. On an average, the angular distribution of propagation speed at 1 AU heliocentric distance is quasi-isotropic over a longitudinal range of 100° centered at the normal of relevant solar phenomenon. The net excess mass and energy in an interplanetary disturbance associated with a disappearing solar filament can be comparable to those of an interplanetary disturbance associated with a large solar flare.  相似文献   

5.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

6.
Neutral exospheric temperatures at 53°, 43° and 33° latitude from Millstone Hill steerable-antenna Thomson scatter measurements, and at 19° latitude from the Arecibo Observatory, obtained during three Thermosphere Mapping Study (TMS) coordinated campaign intervals during 1984 and 1985, are analyzed for diurnal and semidiurnal tidal components. The resulting amplitude and phase latitudinal structures are compared with numerical simulations. The observed semidiurnal tidal components are thought to be significantly affected by tidal waves propagating upwards from below the thermosphere during these solar minimum periods. We speculate that current inadequacies in specifying F-region plasma densities and mean zonal winds at lower altitudes within the simulation model may account for certain discrepancies between observations and theory.  相似文献   

7.
We present a new two-dimensional divergence-free heliospheric magnetic field of which the radial component depends on latitudinal gradients in the solar wind speed. It is used in a two-dimensional numerical modulation model to study its qualitative effects on cosmic-ray modulation. We find that this field causes large solar-cycle polarity dependent increases in cosmic-ray intensities at either high or low latitudes and we discuss the reasons for this.  相似文献   

8.
Intensity increases of 4 – 13 MeV protons correlated with recurrent high speed solar wind streams were observed on board Helios 1 and 2 at heliocentric distances between 0.3 and 1.0 AU. Study of events which occurred in the time period 1975 – 1976 showed that recurrent fast solar wind streams were sometimes not accompanied by corotating events and small events were more frequently observed than large corotating events, which occurred only occasionally. The explanation for these phenomena seems to be the variation of the number of suprathermal particles injected into the acceleration process. Radial gradients of corotating events from February till April 1976 were investigated. The gradient changed its sign in successive solar rotations and exhibited strong time dependence inside 1 AU. Clearly negative gradients were measured in corotating events which occurred in February and April 1976. These observations showed that probably there were no stationary corotating structures in interplanetary space. We suggest that this effect is related to local disturbances of solar origin, e. g. flare initiated shocks.  相似文献   

9.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

10.
Observations of galactic cosmic rays (GCRs) from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that in addition to a possible global asymmetry in the north–south dimensions (meridional plane) of the heliosphere, it is also possible that different modulation (turbulence) conditions could exist between the two hemispheres of the heliosphere. We focus on illustrating the effects on GCR Carbon of asymmetrical modulation conditions combined with a heliosheath thickness that has a significant dependence on heliolatitude. To reflect different modulation conditions between the two heliospheric hemispheres in our numerical model, the enhancement of both polar and radial perpendicular diffusion off the ecliptic plane is assumed to differ from heliographic pole to pole. The computed radial GCR intensities at polar angles of 55° (approximating the Voyager 1 direction) and 125° (approximating the Voyager 2 direction) are compared at different energies and for both particle drift cycles. This is done in the context of illustrating how different values of the enhancement of both polar and radial perpendicular diffusion between the two hemispheres contribute to causing differences in radial intensities during solar minimum and moderate maximum conditions. We find that in the A > 0 cycle these differences between 55° and 125° change both quantitatively and qualitatively for the assumed asymmetrical modulation condition as reflected by polar diffusion, while in the A < 0 cycle, minute quantitative differences are obtained. However, when both polar and radial perpendicular diffusion have significant latitude dependences, major differences in radial intensities between the two polar angles are obtained in both polarity cycles. Furthermore, significant differences in radial intensity gradients obtained in the heliosheath at lower energies may suggest that the solar wind turbulence at and beyond the solar wind termination shock must have a larger latitudinal dependence.  相似文献   

11.
Data from coronal radio-sounding experiments carried out on various interplanetary spacecraft are used to derive the empirical radial dependence of solar wind velocity and density at heliocentric distances from 3 to 60 solar radii for heliolatitudes below 60° and for low solar activity. The radial dependencies of solar wind power and acceleration are derived from these results. Summaries of the radial behavior of characteristic parameters of the solar wind turbulence (e.g., the spectral index and the inner and outer turbulence scales), as well as the fractional density fluctuation, are also presented. These radio-sounding results provide a benchmark for models of the solar wind in its acceleration region.  相似文献   

12.
利用Helios飞船对太阳风高速流的等离子体和磁场观测,本文考察了0.3-1AU作用在高速流上各种体积力的径向分布.结果表明:普遍采用的在碰撞为主等离子体中导出的经典粘性系数表式不适用于太阳风高速流;为使惯性力与各体积力之和相等,必须有大小跟这一空间范围内的太阳重力相近的粘性减速力.本文提出一种新的方法,导出了太阳风高速流中实际粘性力的径向分布,并求出了实际粘性系数的径向分布.结果发现,相对于经典粘性系数,1AU处太阳风高速流的粘性系数的减小不小于十分之一.   相似文献   

13.
The Ionospheric F2-layer peak parameters response to a magnetic storm had been investigated over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°), Jicamarca, Peru (11.95°S, 76.87°W, dip angle, 0.8°) and Hermanus, South Africa (34.42°S, 19.22°E, dip angle, −60.77°), using percentage enhancement/depletion values. Our results showed an enhancement in NmF2 at all of these stations. Averagely, pre-noon and post-noon peaks are highest at Ilorin during quiet time. The similar pattern observed for quiet condition between Ilorin and Jicamarca was due to their latitudinal positions. For disturbed NmF2 condition, Jicamarca and Ilorin recorded higher peaks at nighttime than during the daytime for the storms main phase, and the reverse over Hermanus. The nighttime and daytime increases were observed respectively at Ilorin and Hermanus during the recovery period. The hmF2 variation recorded higher enhancement at Jicamarca during the daytime and at Hermanus at nighttime during the main phase. During the recovery phase, the highest enhancement was recorded during the daytime at Jicamarca, and over Hermanus at nighttime. These observations find their explanation in the magnetospheric current, solar wind and E × B drift.  相似文献   

14.
Observations of solar cosmic ray events far from the sun (?1 AU) became possible after the launch of Pioneer 10 in 1972. Four spacecraft have now travelled beyond the orbit of Jupiter - Pioneer 10/11 and Voyager 1/2 — and are producing a growing body of distant observations of solar cosmic ray events. Initial studies using Pioneer 10/11 data out to ~6 AU interpreted flare particle observations in terms of a diffusion model, including the effects of convection and adiabatic energy loss. This model enjoyed general success in explaining the time-intensity profiles in cases where the spacecraft connection longitude at the sun did not change significantly with time. The results implied that the radial diffusion coefficient (Kr) increased slowly with distance over that radial range. More recent results at larger distances imply that Kr may begin to decrease beyond ~5 AU. It is not yet clear whether the standard diffusion model will be adequate to explain solar events well beyond 5 AU. The fact that large events at very large distances can last up to two solar rotations implies that solar wind stream structure will also play a role in the event dynamics. In general, however, observations at large distances offer perhaps the best hope of separating interplanetary propagation effects from coronal storage and propagation effects which frequently dominate observed event profiles at 1 AU.  相似文献   

15.
The effects of changing the position of the solar wind termination shock and the position of the heliopause, and therefore the extent of the heliosheath, on the modulation of cosmic ray protons are illustrated. An improved numerical model with diffusive termination shock acceleration, a heliosheath and drifts is used. The modulation is computed in the equatorial plane and at 35 heliolatitude using recently derived diffusion coefficients applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. It was found that qualitatively the modulation results for the different heliopause positions are similar although they differ quantitatively, e.g., clearly different radial gradients are predicted for the regions beyond the termination shock compared to inside the shock. The difference between the modulation for the two solar polarity cycles are less significant at a heliolatitude of 35° than in the equatorial plane. We found that moving the termination shock from 90 to 100 AU, with the heliopause fixed at 120 AU, caused only quantitative differences so that the exact position of the TS in the outer heliosphere seems not crucially important to global modulation. Moving the heliopause outwards, to represent the modulation in the tail region of the heliosphere, causes overall decreases in the cosmic ray intensities but not linearly as a function of energy, e.g., at 1 GeV the effect is insignificant. We conclude from this modelling that the modulation of protons in the heliospheric nose and tail regions are qualitatively similar although, clear quantitative and interesting differences occur.  相似文献   

16.
Quartz-UV occultation measurements by the satellite Interkosmos-16 have been used to calculate ozone densities at altitudes between 55 and 75 km for the period July 27 – October 28 of 1976. Although the densities agree quite well with the Krueger-Minzner-model below 65 km distinct seasonal-latitudinal variations have been found. During July and August latitudinal variations are more pronounced than in September and October with a slight maximum shifting from 5° S in July to 30 – 40° S in September. A comparison of different height levels shows a decreasing latitudinal variation for increasing altitude during July and August and rather modest variations for September and October.  相似文献   

17.
Observations of the OI 630 nm nightglow emission using a wide-angle imaging system have been carried out at Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude), Brazil during the period 1987 to 1999. The OI 630 nm images obtained during this period show frequently the optical signature of the plasma bubble (quasi north-south aligned depleted intensity regions). During the period studied a strong seasonal variation was noticed in the plasma bubble formations. Also, it was observed that, during high solar activity, the plasma bubble bifurcation occurrences were higher than during low solar activity. Important features from this set of observations are presented and discussed in this paper.  相似文献   

18.
Data from the particle experiment aboard the AUREOL-3 polar satellite show that about 30% of the summer cusp crossings are characterised by a clear latitudinal energy dispersion of the solar wind ions. This energy-latitude correlation is observed at very high latitudes, 80° – 85°, near the polar boundary of the cusp, as an increase of the ion average energy with latitude. These structures have a typical latitude extent of 1° – 2° at ionospheric heights and correspond to a northward-directed IMF. These observations are consistent with a sunward convection of the foot of the magnetic flux tubes recently merged with a northward directed interplanetary magnetic field.  相似文献   

19.
Presented is the analytical approximation of averaged solar wind velocity radial dependence in the solar wind acceleration region at heliolatitudes below 60° under low and moderate solar activity. This empirical approximation is based on the data of radio sounding of the solar corona with radio signals from various spacecraft. Deduced is an equation connecting the solar wind velocity radial dependence and the radial dependence of solar wind plasma polarization electric field intensity. This allows constructing a semi-empirical radial dependence of plasma polarization electric field corresponding to the empirical radial dependence of solar wind velocity. Main properties of the semi-empirical dependence, which is based on radio sounding data, are described.  相似文献   

20.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号