首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
航空产品用螺纹,一般要求较高。对于车制的螺纹,为了改善其切削条件,依据各种零件材料加工性质的不同,我们对普通车床用的方杆螺纹车刀,一般都要磨出一定的前角来(γ=5~25°)。由于螺纹车刀有了前角,加工出的螺纹牙形角就不等于螺纹车刀的牙形角了。所以,为了车制出正确的螺纹牙形角,必  相似文献   

2.
在精密切削时怎样能刃磨出一把质量好的精密刀具是一个十分重要的问题。在工厂中,由于刃磨工艺不合理,刃磨后的精密刀具质量不高,寿命不长,又因为对于刃磨工艺尚缺乏研究,这方面资料很少,所以生产上需要解决这一个问题。经过试验研究刃磨后的硬质合金精密车刀刀面光洁度可达▽13~▽14a,刃口平整,用这种精密车刀在自动车床上加工摆轮零件光洁度▽11a,在超高精度车床上加工H62  相似文献   

3.
从圆锥面刃磨原理出发,推导了一般主刃的钻头结构参数的计算公式,研究了刃磨参数对钻头结构参数的影响规律。通过具体实例,介绍了碟型砂轮刃磨原理与设计方法,同时,也为实现钻头刃磨提供了调整使用方法。研究结果表明,合理选择蝶型砂轮,可以实现大范围钻头的锥面刃磨,适当调整刃磨参数可以基本满足大部分给定设计参数钻头的刃磨,对于大后角、大锋角、小横刃斜角参数组合的钻头刃磨完成较大。  相似文献   

4.
Ni基高温合金的应用日益增多,但其加工困难、效率低,为此进行了高效车削适用的硬质合金可转位车刀的涂层、几何角度与刀片形状的切削试验。结果表明,TiAlN涂层、主偏角为45°、前角为3°~9°、刀片为圆形的车刀效果较好。  相似文献   

5.
我厂新品中,2Cr15Mn15Ni2N材料的零件比较多,这些零件上的小规格螺纹孔(如M1.8,M2,M1.6)加工比较困难。普通的小规格三槽丝锥由于横截面积尺寸小、强度弱,刃磨时砂轮的修正和操作不易掌握,刃口上容易出现负前角、负后角或前角及后角为零等现象,因此这种丝锥很难胜任奥氏体不锈钢  相似文献   

6.
铰刀的主切削刃后角对于铰孔质量、铰刀耐用度、铰刀刃口的机械强度有显著影响。特别是用正前角硬质合金铰刀铰削不锈铜、耐热合金等材料时,主后角过大往往导致铰刀崩刃和被铰孔产生棱度。刃磨时控制铰刀后角,过去一般使用定心器和采用目测的方法,但是这两种方法,定心器效率太低,目测法又误差太大,都不能稳定产品的生产及质量。我们厂用千分表测量铰刀的后角。这种方法,不需要任何计算,只是用测量的数值,对照事先编制好的图表,可迅速而准确地查出铰刀的后角数值,从而保证在刃磨时对主后角的严格控制,提高了铰刀的耐用度和铰孔的质量。实践证  相似文献   

7.
为了解决某发动机起动电机中带槽换向器(镉铜材料)高精度、高光洁度加工要求,我们在部内外兄弟厂的经验基础上,自行设计了一种λ角可调式的粘接——机夹式金刚石精光车刀。试用证明,这种金刚石车刀性能良好。在刚性、精度较高的机床上(或采用静压轴承的机床)用这种车刀所加工的带槽圆柱表面的光洁度可稳定在▽8以上。刀具寿命也大大高于硬质合金车刀。金刚石精光车刀的结构如图1所示。金刚石刀头是用一级天然金刚  相似文献   

8.
刀具特点 1.刀具材料:刀片为YT15,刀杆为45号钢。 2.前角2°~4°,后角4°~6°,刀尖部磨成0.10毫米R,两切削刃磨出1毫米宽,负8°~10°的倒棱,使刀尖、切削刃强度增加;同时,负角挤削,不易粘刀。月牙槽起排屑和存冷却液作用。  相似文献   

9.
通用钻头经过刃磨改进几何角度后,钻削铝镁合金零件,增加了切削性能,保证产品质量,并提高生产效率,以下是钻头的几何角度,以供参考。一、前角:外圆处为8°±3°,越近中心逐渐减小,接近中心处为-13°+3°,如果不把前角磨小当钻头占透时,发生零件往上跳动造成孔椭圆,甚至报废,把不住零件造成机床事  相似文献   

10.
加工陀螺马达转子用的专用刀具——复合多刃车刀,经过生产实践的考验,在马达转子的粗加工或半精加工中,对提高零件加工质量、数量和减轻工人劳动强度方面效果较为显著。一、结构特点和原理 1.复合多刃车刀是由两把多刃车刀组成的,而每把多刃车刀又可看成由内孔镗刀、外圆车刀、端面成型车刀组成。能对马达转子的内孔、型面和长轴同时进行切削(见图)。 2.转子除了叠层外,全是铸铜,属脆性材料,在切削时产生的是针状崩碎切屑,变形不大,并不沿着刀具的前倾面流动,而压力中  相似文献   

11.
TLMW50是碳化钨基铬钼钢钢结硬质合金,它耐磨性好、硬度高、并具有一定韧性,用电火花制造滚轮寿命长、精度和光洁度高,生产效率也高,特别对难加工合金材料更是重要的加工手段之一。我们在试制过程中对这项新工艺经多次摸索和试验,其精度和光洁度全部达到设计要求。本工艺主要在普通 CA6140车床和 TW1442螺纹磨床上解决电极的加工和桦齿成型车刀的刃磨关键,整个工艺过程共分八个部分。  相似文献   

12.
摆动式刀架加工过程中刀具角度的变化ToolAngleChangeDuringMachiningwithSwingToolCarrier国营宝成通用电子公司鱼婧丽刀具在制造、刃磨及测量时,刀刃、刀面相对于定位基准的角度称为刀具的静态角度。此定位基准的确...  相似文献   

13.
三维编织T300/环氧复合材料的弯曲性能及破坏机理   总被引:2,自引:0,他引:2  
针对不同编织角、不同纤维体积含量、不同编织结构的三维编织T300/环氧复合材料进行了三点弯曲试验,获得了这些编织复合材料的主要弯曲力学性能,分析了不同编织工艺参数对材料弯曲力学性能的影响.对试件断口进行了宏观及扫描电镜观察,从宏、细观角度研究了材料的变形及其破坏机理.结果表明,三维编织T300/环氧复合材料具有良好的弯曲力学性能,弯曲载荷-挠度曲线呈现明显的线性特征;编织角、纤维体积含量及编织结构对复合材料的弯曲性能有较大影响;三维编织复合材料的弯曲破坏机理与编织工艺参数有关.  相似文献   

14.
 分析了热解炭的双反射特性和消光现象,对热解炭消光角测量方法的理论基础进行了研究,并对化学气相渗透工艺制备的C/C复合材料中热解炭消光角的实验测量数据进行了解释。结果表明:消光角是材料双反射特性的综合反映;消光图法和四分之一象限光强法得到的消光角理论表达式不同,但消光角的数值总是取决于材料的双反射率比值;热解炭的消光角测量值是材料较大反射面积光学特性的平均,包含了杂原子、缺陷、乱层结构的信息,因而和石墨消光角的含义不同;石墨结构是热解炭织构有序的极限,但热解炭消光角并不受石墨理论消光角数值的限制。  相似文献   

15.
石英增强聚酰亚胺树脂基复合材料是一种非均匀的各向异性材料,其加工性能高度依赖于纤维铺层方向与加工进给方向所成角度,即纤维方向角。本文通过一系列不同纤维方向角的干切削和超低温冷却铣削实验,研究了纤维方向角对表面形貌、表面粗糙度、铣削力及刀具磨损的影响。结果表明:不同纤维方向角,剪应力形式不同,切削断屑形式也不同。纤维方向角为锐角时铣削表面质量均良好,但当纤维方向角增大到90°时,切削表面质量下降,切削力变化幅度增大。相同铣削时间内,在干切削工况下,刀具磨损严重,涂层脱落面积约为测量面积的70%;而在低温切削工况下,涂层未遭到严重破坏,刀具仍处于稳定磨损阶段,刀具耐用度优于干切削工况。  相似文献   

16.
一、序言 某发动机Ⅰ级涡轮叶片材料为铸造镍基耐热合金,切削加工性很差。其榫齿部分的加工,采用M42铣刀铣削加工时,刃磨一次只能加工1~3片,而一把铣刀只允许刃磨12次。每把铣刀的价格为240元,故加工叶片榫齿的成本高,效率低,而且质量差,废品多,满足不了生产的需要。  相似文献   

17.
本机夹车刀的研制,解决了K465难加工材料加工效率低、加工成本高的瓶颈难题.做到有所发展与创新,同时为公司机夹刀具国产化奠定了基础. 随着新型发动机的快速发展,高温合金零件加工成本高、周期长、刀具消耗极大的问题更显突出,在实际生产加工中找出这些问题形成的原因,提出可行的刀具研制方案,并在切削加工中加以验证. 在K465镍基高温合金材料的环块类零件加工中,结合环块类零件的结构特点和材料特性,研制开发了上压式机夹车刀,在实际试验加工中做到了高效、低耗,并获得了理想的加工质量.  相似文献   

18.
李信能  陈鼎昌 《航空学报》1994,15(11):1403-1407
提出一种六自由度机械手的运动合成方法应用于钻头的刃磨,该方法利用运动的合成形成了刃磨钻头后刀面所需的刃磨运动,从而使得刃磨的调整变得十分方便。刃磨参数可以根据钻尖几何参数对机械手运动方程进行求解得到,刃磨出钻尖的测量结果与理论值基本一致。  相似文献   

19.
X-Cor 夹层结构的平压性能试验   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对不同的z-pin角度、面板厚度、去除泡沫处理的X-Cor夹层结构试样进行平压性能试验和分析比较,得到其破坏模式及不同设计参数对性能的影响。试验结果表明:X-Cor夹层结构中z-pin和泡沫存在协同增强效应;增大z-pin端部约束和减少z-pin的植入角度能提高平压性能;但z-pin角度为0°的夹层结构平压性能对植入角的角偏差缺陷更敏感,缺陷的存在影响承力性能。  相似文献   

20.
航空发动机的小模数齿轮精度高、刚性差,结构复杂。目前,我国仍延用传统的精插齿工艺。加工中,受插齿刀的精度、刃磨前角误差以及刀刃锋利程度的影响,致使调整、加工难度较大,生产效率低。而剃齿工艺恰好克服和弥补了精插齿工艺的不足。剃齿工艺是由美国耐森纳尔·波...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号