首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
高分辨率空间红外相机的光学系统具有大口径和大相对孔径的特点,针对某高分辨率红外相机的设计需求,根据三级像差理论计算了同轴三反系统初始结构,设计了传统的同轴三反和同轴偏视场三反系统。通过同轴两反主光学系统和离轴三反后光学系统合理的光焦度分配,设计了组合式五反系统共三种光学系统。设计的系统工作波长8~10μm,焦距7 000mm,相对孔径1…2.29,线视场角±0.58°×0.03°。在综合分析成像性能和光学加工、检测及系统装调等技术的基础上选定组合式五反光学系统为最终方案。五反光路结构尺寸为3 500mm×3 050mm×3 050mm,主镜达到3m级别,考虑到单镜整体加工检验难度,采用18块边长750 mm的正六边形子镜进行合成孔径拼接,子孔径拼接后系统全视场内的调制传递函数大于0.4,系统各项性能满足了技术指标。  相似文献   

2.
轻小型、高分辨率已经成为高光谱成像仪的发展趋势。文章基于Offner型光谱成像系统的结构特点,分析了高光谱成像仪前置望远系统的设计特殊性,利用同轴反射系统的几何光学理论求解方法,给出了一种长焦距、大视场的高光谱成像仪前置望远离轴三反远心系统的设计思路和设计结果,光学系统焦距2 500 mm,视场角达到12°。分析表明,该设计在奈奎斯特频率71.4线对/mm处调制传递函数接近衍射极限,结构紧凑,不仅适用于Offner型光谱仪前置望远光学系统,还可用于其它大视场远心光学系统。  相似文献   

3.
文章以同轴三反偏视场光学系统型式为例,利用ZEMAX宏建立优化函数,实现了将光学系统视场中心位置、视场大小作为变量进行优化设计,从而实现了综合考虑光学系统视场、像质及相关尺寸要求的整体优化.  相似文献   

4.
用于海洋成像仪的离轴三反主光学系统设计   总被引:1,自引:0,他引:1  
郑国宪  许士文 《宇航学报》2007,28(4):1030-1033
海洋成像仪光学系统要求在宽视场内具有高空间分辨率。该成像仪处于35800km高的静止轨道,在2.46°视场内地面分辨率需要达到250m,光谱覆盖范围为0.4~11.5μm,包括可见光近红外12个通道和远红外两个通道。介绍了满足这些要求的离轴三反射镜主光学系统的设计及结果,像质达到了衍射极限。  相似文献   

5.
成像光谱仪宽视场离轴三反望远系统的光学设计   总被引:1,自引:0,他引:1  
视场宽、结构紧凑、质量轻是空间光学系统设计研究的热点。文章从离轴三反望远系统的应用技术指标分析、设计思想、设计流程及光学系统优化4个方面,研究了成像光谱仪用宽视场、大相对孔径离轴三反消像散望远系统的设计问题,设计出一个光谱范围0.4~2.5μm、焦距f′=700mm、相对孔径f′/4、线视场角20°的离轴三反望远系统,次镜为球面,主镜和三镜非球面最高次数为4次,在Nyquist频率27.8对线/mm处,调制传递函数值均大于0.87。  相似文献   

6.
介绍了离轴三反光学系统初始结构的设计方法,并用该方法进行离轴三反光学系统设计。用ZEMAX软件设计了一个焦距为1 000mm,F数为10,垂直轨道方向视场为±4.0°,沿轨道方向为6.0°和6.5°的光学系统。结果表明,该光学系统在空间频率71线对/mm处,调制传递函数均大于0.4,且三镜为球面,具有易于制造装调等优点。  相似文献   

7.
针对测绘图像几何精度对光学镜头畸变稳定的要求,仿真分析了一偏场使用的同轴三反光学系统镜头的畸变稳定性,从而论证该光学镜头用于测绘相机的可能性。将光学系统畸变误差源分解为加工误差、装调误差、工作温度变化引入的误差、以及调焦引入的误差4个主要部分,利用光学设计软件仿真分析了各误差源单独做用时对光学镜头畸变的影响情况,仿真结果表明在引入误差源的情况下,所分析的光学镜头的相对畸变不变,绝对畸变的最大变化范围小于2个像元尺寸,光学镜头的畸变稳定,有用于测绘相机的可能性。  相似文献   

8.
光学遥感卫星中空间相机常用的离轴三反光学系统,离轴三反系统能扩大光学系统视场、提高系统调制传递函数(MTF),但是离轴角会带来积分时间不同步的问题,文章对离轴角引起的积分时间不同步而产生的成像品质影响进行了分析。首先对离轴三反光学系统的离轴角建立数学模型后,应用STK软件仿真空间TDICCD相机在不同级数下离轴角带来的摄影点积分时间和星下点积分时间的差异,然后用Matlab编写程序处理得到的不同积分时间的采样点得出结论,离轴角越大,光学系统的传递函数越小,光学相机成像品质越差。在工程应用中,对一个确定离轴角的离轴三反光学系统,通过仿真,对积分时间调整给出了相应设计建议。  相似文献   

9.
针对高空间分辨率、高光谱分辨率和大幅宽成像的遥感应用需求,提出了高分辨率超大幅宽星载成像光谱仪技术方案,分析确定了成像光谱仪光学系统指标,设计了空间成像光学系统和光谱成像光学系统.空间成像光学系统采用自由曲面离轴三反设计方案,实现了大视场、大相对孔径像方远心设计,系统相对畸变小于0.02%;光谱成像光学系统的狭缝长度超...  相似文献   

10.
基于有限元法的离轴TMA结构选型分析   总被引:1,自引:0,他引:1  
运用CAD软件Pro/E建立了采用离轴非球面三反射镜光学系统空间遥感器的几何模型,并在此基础上建立了有限元模型。分析了4种结构构型方案的综合特性,包括自重变形分析、模态分析和热特性分析。通过对比4种方案的计算结果,说明其中两种结构设计在方案设计阶段具有一定的优势。  相似文献   

11.
基于CMOS APS的星敏感器光学系统参数确定   总被引:8,自引:0,他引:8  
董瑛  邢飞  尤政 《宇航学报》2004,25(6):663-668
基于CMOS APS图象传感器的星敏感器是适应航天技术的发展而产生的新一代姿态敏感器。确定光斑形状和大小、光学系统有效通光孔径、视场和焦距等参数是进行星敏感器光学设计的前提。本文基于选定的CMOS APS图象传感器分别对这些参数进行了分析和计算。确定光斑形状和大小的依据是,减小由于探测器像元对光斑能量分布的采样导致点扩散函数变形,从而引起的利用亚像元技术求星像中心的计算误差。光学系统的有效通光孔径与星敏感器所能探测到的极限星等有关,通过从目标辐射特性直到探测器响应的能量计算可以确定孔径的大小。确定视场和焦距首先要满足星敏感器实现全天自主星图识别所需的导航星捕获概率,其次要考虑与之相关的误差。  相似文献   

12.
提出了一种大相时孔径轻小型光学系统的设计方案,给出了设计方案及热分析结果.光学系统工作谱段500~800nm,视场角9°,相对孔径1/1.2,光学系统设计结果良好,弥散斑直径在两个像元尺寸之内,能够满足光学系统对能量集中度和弥散斑的要求.基于光学热补偿理论对光学系统进行了无热化分析和消热设计.通过分析不同温度下的传递函...  相似文献   

13.
为使电子枪的性能满足太空环境下的作业要求,对10 kV太空电子枪的光学系统进行设计与仿真研究,给出一套完整的设计方法及流程.首先选择合适的阴极材料,仿真得到电子束的轨迹;而后算出合适的焦距,对一级聚焦电子光学系统进行仿真.鉴于一级聚焦系统不能实现在工作距离为300 mm时束斑直径为0.4 mm的设计目标,进而设计二级聚...  相似文献   

14.
本文介绍ADTF程序的功能设计构思与框图。该程序能做自动设计、点列图与OTF计算、渐晕和通光孔径计算、焦距缩放、光焦度交换、透镜弯曲、参数修改、光阑追迹、元件焦距与顶焦距计算及象差计算等。  相似文献   

15.
李迎  孙亚飞 《宇航学报》2009,30(6):2328-2333
基于TMS320F2812及其内置CAN总线控制器,开发了一套适合多种CAN总线接口配置要求 的通用电模拟器硬件系统,用于某型卫星地面电联试系统中敏感器电模拟器的研制,取得了 良好效果。该电模拟器硬件系统具有CAN总线接口配置灵活、数据处理能力强、应用程序开 发方便、通用性强等特点,可用于卫星地面电联试系统中的多种电模拟器开发研制。
  相似文献   

16.
《Acta Astronautica》1986,13(10):607-621
The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4).The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations.The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed.After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,…The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground station, and image data are directly transmitted to the ground station by the spacecraft X-band transmitter.Finally, the paper presents a set of typical Earth observation missions which can be realized with JEOS, for countries which wish to have their own observation system, possibly also as a complement to the SPOT and/or LANDSAT observation data.  相似文献   

17.
小卫星高分辨率成像系统   总被引:1,自引:0,他引:1  
林来兴 《上海航天》2011,28(6):54-57
对小卫星对地观测高分辨率成像系统进行了综述。介绍了国内外有极高分辨率(0.5~1.0m)、高分辨率(1.8~2.5m)和中高分辨率(4-10m)小卫星光学成像系统的性能,并与合成孔径雷达(SAR)成像系统进行了比较。给出了小卫星光学成像系统、SAR高分辨率成像系统和卫星平台的关键技术。讨论了未来小卫星及其高分辨率成像系统技术的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号