首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.  相似文献   

2.
Chromosomal aberrations induced by high-energy iron ions with shielding.   总被引:1,自引:0,他引:1  
Biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. To improve and validate these codes biophysical experiments are needed. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 500 MeV/n iron ion beams (dose range 0.1-1 Gy) after traversing shields of different material (lucite, aluminium, or lead) and thickness (0-11.3 g/cm2). For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy-ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The fraction of aberrant lymphocytes has been evaluated as a function of the dose at the sample position, and of the fluence of primary 56Fe ions hitting the shield. The influence of shield thickness on the action cross-section for the induction of exchange-type aberrations has been analyzed, and the dose average-LET measured as a function of the shield thickness. These preliminary results prove that the effectiveness of heavy ions is modified by shielding, and the biological damage is dependent upon shield thickness and material.  相似文献   

3.
The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/micrometer). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amount of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis within 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation: an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately.  相似文献   

4.
An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).  相似文献   

5.
Understanding the effects of single-particles from conventional radiation biology experiments is problematic due to the stochastics of particle tracks. This complicates the determinations of risk associated with low doses. We have developed a charged particle microbeam, which allows individually counted particles to be delivered to precise cellular locations. The system is capable of delivering a single charged particle with > 99% efficiency. Of these particles 90% are delivered with a resolution of +/- 2 micrometers and 96% with a resolution of +/- 5 micrometers. We have carried out preliminary studies in Chinese hamster V79 cells to monitor the effectiveness of low energy protons at inducing cytological damage. We have used the micronucleus assay as a measure of predominantly lethal chromosome damage. The effects of a single 3.2 MeV proton delivered individually to cells could be measured, with less than 2% of the exposed cells producing micronuclei 24 hours later. The yield of micronuclei formation was essentially linear up to the highest dose (30 particles per cell nucleus) delivered. Ultimately, the ability to target particles to different parts of the cell nucleus may start to impact on models available for chromosome aberration formation and chromosomal Organisation and mechanisms underlying genomic instability.  相似文献   

6.
Radiobiological effects of heavy charged particles are compared for a large variety of ions from Helium to Uranium and energies between 1 and 1000 MeV/u which correspond to LET values between 10 and 16000 keV/micrometers. The different cross section for the induction of strand breaks and chromosomal aberrations as well as for inactivation and mutation induction exhibit striking similarities when compared as function of the linear energy transfer (LET). At LET values below 100 keV/micrometers all data points of one specific effect form one single curve as a function of LET, independent of the atomic number of the ion. In this LET range, the biological effects are independ from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in this regime. For LET values greater than 100 keV/micrometers, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the sigma-LET curves for different endpoints indicates that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. However, from the existing data of biological effects, it can be concluded that the efficiencies for cell killing are always smaller than those extrapolated from X-ray data on the basis of the energy deposition only. Therefore, cells which are directly hit by an HZE particle are not killed and undergo a finite risk of mutation and transformation.  相似文献   

7.
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.  相似文献   

8.
9.
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.  相似文献   

10.
The charged particle spectrum for nuclei from protons to neon, (charge Z=10) was observed during the cruise phase and orbit around Mars by the MARIE charged particle spectrometer on the Odyssey spacecraft. The cruise data were taken between April 23, 2001 and mid-August 2001. The Mars orbit data were taken March 5, 2002 through May 2002 and are scheduled to continue until August 2004. Charge peaks are clearly separated for charges up to Z=10. Especially prominent are the carbon and oxygen peaks, with boron and nitrogen also clearly visible. Although heavy ions are much less abundant than protons in the cosmic ray environment, it is important to determine their abundances because their ionization energy losses (proportional to Z2) are far more dangerous to humans and to instruments. Thus the higher charged nuclei make a significant contribution to dose and dose equivalent received in space. Results of the charged particle spectrum measurements will be reported.  相似文献   

11.
A charged particle semiconductor-telescope is under construction in the CRIP, Budapest, to measure fluxes of 4–30 MeV/AMU protons, alphas, and M nuclei in interplanetary space. Identification and counting of particles are made on-board using microprocessor techniques. Details including some new ideas on economical coding of information and design of electronics are given.  相似文献   

12.
In track segment experiments cell survival and chromosome aberrations of mammalian cells have been measured for various heavy ion beams between helium and uranium in the energy range between 0.5 and 960 MeV/u, corresponding to a velocity range of 0.03 to 0.87 C, and an LET spectrum from 10 to 15 000 keV/micrometers. At low LET, the cross section (sigma) for cell killing increases with increasing LET and shows a common curve for all ions regardless of the atomic number. This indicates that in this region the track structure of the different ions is of only a minor influence, and it is rather the total energy transfer, which is important for cell killing. At higher LET values, deviations from a common sigma-LET curve can be observed which indicate a saturation effect. The saturation of the lighter ions occurs at lower LET values than for the heavier ions. These findings are also confirmed by the chromosome data, where the efficiency for the induction of chromosomal aberrations for high LET particles depends on the track structure and is nearly independent of LET. In the heavier beams (Z > or = 10) individual particles cause multiple chromosome breaks in mitotic cells.  相似文献   

13.
Biological damages such as mutations, chromosomal aberrations etc. are a consequence of biochemical changes mostly in the DNA. With ionizing radiation, these chemical changes are due to primary ionization events and secondary ionization effects caused by the primarily produced electrons. Differences in the biological response of densely ionizing radiation, like heavy charged particles, in comparison to sparsely ionizing radiation, such as X- or gamma-rays, are mainly due to the differences in the production of the so called delta-electrons. Therefore, the emission process of electrons i.e. the cross section for the primary ionization event as well as the energy and angular distribution of the emitted electrons should be understood in detail. The delta-electron emission processes occuring in fast heavy ion atom collisions are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed.  相似文献   

14.
We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments.  相似文献   

15.
The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.  相似文献   

16.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   

17.
DNA double-strand breaks (DSB) are induced linearly with absorbed dose both for sparsely and densely ionizing radiations. By enzymatic repair the linear relationship between the number of DSB and absorbed dose is converted into a non linear one. Furthermore, the RBE-values of high LET radiations for residual DSB increase with increasing amount of DSB repair especially in the low dose range. Unrepaired and/or misrepaired DSB are supposed to be responsible for chromosomal aberrations, cell killing, oncogenic cell transformation and gene mutation. At low doses, for these endpoints much higher RBE-values than those for initial DSB are observed. However, with increasing doses the RBE-values for these endpoints approach those for initial DSB. These observations are likely to be interpreted using the following two parameters of the energy deposition structure: 1. The distribution of clusters with respect to their size at the nm-scale and to the number of ionizations per cluster (cluster distribution). 2. The distribution of distances between clusters of definite size and with definite number of ionizations (distance distribution of clusters). For the induction of DSB solely the ionization density in clusters of nm-dimensions (i.e. the cluster distribution) is important. For unrepaired or misrepaired DSB (responsible for chromosome aberrations, cell killing, oncogenic cell transformation and gene mutation) both the cluster distribution and the distance distribution of clusters are relevant. At low doses the distance distribution of clusters along a single particle track determines the RBE-value. However, with increasing dose the distribution of clusters produced by all particles traversing the cell nucleus becomes increasingly determinant. Here, solely the cluster distribution is important as it is the case for the induction of DSB.  相似文献   

18.
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to gamma-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.  相似文献   

19.
We report measurements of chromosomal aberrations in peripheral blood lymphocytes from cancer patients undergoingradiotherapy treatment. Patients with cervix or esophageal cancer were treated with 10 MV X-rays produced at a LINAC accelerator, or high-energy carbon ions produced at the HIMAC accelerator at the National Institute for Radiological Sciences (NIRS) in Chiba. Blood samples were obtained before, during, and after the radiation treatment. Chromosomes were prematurely condensed by incubation in calyculin A. Aberrations in chromosomes 2 and 4 were scored after fluorescence in situ hybridization with whole-chromosome probes. Pre-treatment samples were exposed in vitro to X-rays, individual dose-response curves for the induction of chromosomal aberrations were determined, and used as calibration curves to calculate the effective whole-body dose absorbed during the treatment. This calculated dose, based on the calibration curve relative to the induction of reciprocal exchanges, has a sharp increase after the first few fractions of the treatment, then saturates at high doses. Although carbon ions are 2–3 times more effective than X-rays in tumor sterilization, the effective dose was similar to that of X-ray treatment. However, the frequency of complex-type chromosomal exchanges was much higher for patients treated with carbon ions than X-ray.  相似文献   

20.
Chromosomal intrachanges induced by swift iron ions.   总被引:1,自引:0,他引:1  
We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/micrometers, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号