首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氧化剂和团聚硼粒度对富燃料推进剂燃速特性的影响   总被引:1,自引:0,他引:1  
考察了细AP和团聚硼含量对含硼富燃料推进剂燃速特性的影响.结果表明,随细AP含量和团聚硼含量的增大,推进剂燃速增加,燃速压强指数也呈增加趋势.同时,以BDP模型为基础,将硼粒度对推进剂燃速特性的影响引入燃速表达式,表达式表明细AP和团聚硼有利于提高氧化剂的燃烧表面积在燃面上的比例,从而有利于提高推进剂的燃速.  相似文献   

2.
团聚硼对富燃料推进剂燃烧性能的影响   总被引:2,自引:0,他引:2  
考察了不同粒度、不同包覆剂的团聚硼对含硼富燃料推进剂燃烧性能的影响。结果表明,随团聚硼颗粒粒度的增大,推进剂的燃速增加,低压可燃极限降低,但燃速压强指数呈下降的趋势;包覆材料AP、L iF有利于提高推进剂的燃速,降低低压可燃极限,但不利于提高燃速压强指数。  相似文献   

3.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

4.
针对高燃速推进剂的发展需求,筛选出一种成本较低的二茂铁型碳硼烷衍生物TPT-01,研究了其作为燃速催化剂对高燃速丁羟(HTPB)固体推进剂工艺性能、燃烧性能、安全性能的影响及迁移性情况。结果表明,添加6%TPT-01的HTPB推进剂药浆粘度较低,工艺性能良好;HTPB推进剂药浆及成品药安全性能良好;HTPB推进剂6.86 MPa下燃速由24.2 mm/s提高至49.6 mm/s, 6.86~15 MPa的静态燃速压强指数为0.330;此外,TPT-01在HTPB推进剂中的迁移性低于辛基二茂铁,有利于HTPB推进剂的燃烧稳定性和界面粘接性能;相较于辛基二茂铁和正己基碳硼烷NHC物理掺混使用,TPT-01是一种效果更好的燃速催化剂。  相似文献   

5.
含硼富燃料推进剂低压燃烧模型   总被引:3,自引:1,他引:2  
针对含硼富燃料推进剂低压燃烧的凝相反应和气相燃烧具有气相反应在燃面上的惰性“沉积层”中进行、气相放热主要由AP与HTPB分解产物的扩散燃烧产生的特点,以BDP模型为基础,建立了含硼富燃料推进剂低压燃烧模型,分析了“沉积层”对气相燃烧的影响。结果分析认为,“沉积层”的存在是含硼富燃料推进剂能在较低压强下维持稳定燃烧,并具有较高燃速和压强指数的主要原因。燃烧模型实质是对BDP模型的拓展,利用该模型定性解释了含硼富燃料推进剂低压下特有的燃烧现象。  相似文献   

6.
高纯硼粉的特性及其在富燃料推进剂中的应用研究   总被引:2,自引:0,他引:2  
通过SEM、XRD、pH计、X射线荧光光谱仪和HAAKE流变仪等研究了高纯硼粉的物化特性,并重点研究了其用于富燃料推进剂的燃烧性能.结果表明,高纯硼粉中大部分颗粒不规则,但在微观上呈晶体结构.由于高纯硼粉表面B2O3、H3BO3杂质非常少,硼粉与水悬浊液的pH值接近中性,硼粉在HTPB粘合剂中的屈服值和表观粘度较小,且随混合时间增加,屈服值和表观粘度保持不变.通过290~407 ℃范围内高纯硼粉富燃料推进剂热分解过程的质量损失可定性认为,高纯硼粉参与凝聚相反应的活性高于无定形硼粉.燃烧性能研究表明,含高纯硼粉的富燃料推进剂低压下正常燃烧,燃烧特性与无定形硼粉相同,实测燃烧热和燃烧效率较高.  相似文献   

7.
AP/HTPB悬浮液的流变特性研究   总被引:3,自引:0,他引:3  
对含硼富燃固体推进剂用AP/HTPB悬浮液的流变学特性及其影响因素AP粒度形状、填充分数及表面活性剂等方面进行了实验研究。结果表明:AP颗粒间通过粘合剂体系相互作用形成网络结构是悬浮液呈假塑性流动的主要原因;相对表观粘度和填充分数的关系可用含结构粘度项的公式很好地描述。加入表面活性剂SH可改善超细粒AP的表面性能。  相似文献   

8.
AP复合固体推进剂燃烧模型   总被引:3,自引:0,他引:3  
本文提出了一个复合固体推进剂的综合燃烧模型和相应的数学处理方法。该模型对凝聚相反应作了更细微的分析,特别重视和强调了各种热量传递对燃烧所起的作用,并以推进剂中处于连续相的粘合剂线性分解速度表示推进剂的线性燃速。根据此模型编制程序并进行了大量计算。计算结果与实验符合得很好。对AP/HTPB多级配推进剂的计算结果中,相对误差小于10%的占80%,对Ae/AP/HTPB推进剂则占90%以上。  相似文献   

9.
稳态和非稳态燃烧模型对于研究AP/HTPB复合推进剂中低频下的压强耦合特性问题是十分重要的,可信的稳态计算结果是非稳态计算的前提。在应用稳态燃烧模型对推进剂的燃速进行计算时,参数值的选取对计算结果具有很大的影响。针对AP/HTPB复合推进剂燃烧特性,在BDP多火焰结构理论的基础上,采用了AP/HTPB复合推进剂稳态燃烧模型,并对模型进行了数值计算,研究了AP和HTPB的指前因子和活化能及δ参数对推进剂燃速的影响。计算结果表明,AP活化能Es,ap的取值对推进剂燃速结果影响较大,在高压下更为敏感;HTPB的指前因子As,b对燃速几乎没有影响,其活化能Es,b对燃速影响较小,高压条件下,影响作用略微增强;参数δ值的选取对计算燃速值影响很大。  相似文献   

10.
本文基于PU/AP和HTPB/AP复合固体推进剂在不同压力下中止燃烧的燃面采用X射线光电子能谱的测试结果,对燃面上氧化剂AP颗粒表面受熔化粘合剂复盖的面积分数进行了半定量计算。结果表明,在燃烧压力大于1.96MPa时,两种推进剂燃面上的粘合剂复盖分数,随压力上升而增加。这一结果将有助于复合固体推进剂稳态燃烧模型的深化和改进。  相似文献   

11.
为研究使用含硼推进剂的微推进器点火燃烧特性及推进性能,搭建了激光点火测试实验台,配制了B/AP、B/KNO_3及B/AP/HTPB三种含硼推进剂配方,分别在2~6 mm不同内径微燃烧室中进行了燃烧测试实验。实验结果表明,配方B/KNO_3的燃速快,推力大,在内径为2.76 mm燃烧室中的平均推力达到0.028 56 N;配方B/AP的推力作用时间长,冲量大,在内径为4.92 mm燃烧室中的最大冲量为0.042 28 N·s;配方B/AP/HTPB燃烧较稳定,粘合剂的添加可改善燃烧特性,但会降低推进性能,且推力、比推力、冲量、比冲量等推进性能均随燃烧室内径的增大呈先增大、后减小的趋势。  相似文献   

12.
采用热分析法、静态燃速测试、标准发动机燃速测试、爆热测试、高速摄像等手段,对比研究了石墨烯包覆铝粉取代相同规格铝粉后HTPB推进剂的热分解特性、燃烧特性及燃烧过程。结果表明,石墨烯包覆铝粉加入后使AP低、高温分解峰分别推迟7℃和22℃,抑制了AP分解,导致推进剂燃速有所降低。石墨烯包覆铝粉对丁羟推进剂团聚的影响具有两面性,一方面推进剂在石墨烯的导热作用下,石墨烯包覆铝粉燃烧更加充分,从而改善了这部分Al-G复合物的团聚。另一方面铝颗粒的燃面滞留时间延长和熔化程度增加,燃烧产生大粒径团聚物,从而导致石墨烯对改善丁羟推进剂铝粉燃烧效率不明显。  相似文献   

13.
为了解决含硼富燃料推进剂在氧弹内燃烧效率低、实验测试值不能正确表征实际燃烧热值的问题,研究了含硼富燃料推进剂燃烧热值测试过程中试样质量和充氧压强对测试结果的影响,在氧弹安全承载范围内,试样质量越大、充氧压强越大,含硼富燃料推进剂燃烧越完全。使用有机溶剂溶解后挥发的混合方式,将作为助燃剂的自制ZS与加工成20目含硼富燃料推进剂实现紧密结合,经过一系列工艺处理制得试样。根据含硼富燃料推进剂在氧弹内的燃烧特点设计加工了专用钨坩埚,使用改进型氧弹式量热仪对试样进行热值测试。实验结果表明,助燃法测试含硼富燃料推进剂的燃烧热值较为有效,解决了含硼富燃料推进剂在氧弹内燃烧不完全以及测试值不能正确表征理论燃烧热值的问题,具有较高的准确性和可靠性。  相似文献   

14.
AP粒度和包覆层对硼燃烧的影响   总被引:2,自引:4,他引:2  
通过对AP和硼及其混合物进行热分析实验,研究了硼在AP分解过程中参与反应的程度;用氧弹式量热计测试含硼富燃料推进剂的爆热,分析硼在推进剂燃烧过程中的放热。结果表明,对各组分含量相同的含硼富燃料推进剂用AP包覆硼粒子和提高超细AP含量可促使硼在AP分解过程中参与反应,使AP/B(1:1)热分解的放热量增加,提高推进剂的爆热,有利于推进剂中硼的燃烧。  相似文献   

15.
探索剪切力对硼粉/端羟基聚丁二烯(B/HTPB)混合体系流变性能的影响,采用旋转粘度计和同向双螺杆转矩流变仪分别考察了B/HTPB体系在低剪切应力和高剪切应力下流变特性的变化规律。结果表明:B/HTPB体系在旋转粘度计中剪切速率小于5s-1,剪切应力小于200Pa,含硼25%的B/HTPB体系在50℃下混合300min,表观粘度在26.9~32.0Pa·s内变化;而B/HTPB体系在同向双螺杆转矩流变仪中的剪切速率范围为71.11~355.56s-1,剪切应力比旋转粘度计的高1~2个数量级,对于含硼20%的B/HTPB体系在50℃、233.33s-1下混合230min,表观粘度达到446.3Pa·s,体系达到凝胶状态。在高剪切力作用下,B/HTPB体系粘度快速增加,低剪切力作用下B/HTPB体系粘度几乎不变。因此,在高剪切应力下对改性硼粉的B/HTPB体系流变规律进行研究,可为硼粉改性和团聚效果的评价提供一种方法。  相似文献   

16.
利用水下声发射法测试静态燃速、线性回归法计算燃速压强指数,研究了GAP/CL-20高能固体推进剂中的固含量,固体组分AP/CL-20、CL-20/Al、Al/AP相对含量等配方组成因素对其燃烧性能的影响。结果表明,固含量在一定范围内升高,使燃速和燃速压强指数均升高;AP/CL-20中AP、CL-20/Al中CL-20含量的增加,均使燃速升高,而燃速压强指数下降;Al/AP中Al含量的增加,使推进剂的燃速下降,而燃速压强指数升高。最后,对GAP/CL-20高能固体推进剂燃速的主导机制进行了简单分析。  相似文献   

17.
未固化AP/Al/HTPB推进剂燃速预示法——DSC法   总被引:2,自引:1,他引:2  
研究了未固化推进剂的燃速预示方法,用DSC法(差示扫描量热法)研究了多种AP/Al/HTPB推进剂的常压热分解特性。根据BDP燃烧模型,考察了推进剂的燃速与热分解参数的关系,提出了未固化推进剂燃速的预示方法。实验结果表明,用DSC法可较准确地预示未固化推进剂的燃速,并成功预示了某配方的基础燃速。  相似文献   

18.
采用水下声发射法测试了推进剂静态燃速,用线性回归法计算了推进剂燃速压强指数;研究了GAP/CL-20高能固体推进剂中增塑比及固体组分AP、CL-20、Al粉粒度等配方组成因素对燃烧性能的影响。研究结果表明,增塑比一定范围内的变化不会对推进剂燃烧性能产生显著影响,其燃速和燃速压强指数基本不变;CL-20粒度减小或AP粒度增加均会导致燃速不同程度的降低,Al粒度减小也会使燃速减小,但在达到一定程度后,燃速又增加;推进剂燃速压强指数随CL-20、Al粉粒度减小和AP粒度增加而减小,并对其燃烧性能的影响机制进行了简单分析。  相似文献   

19.
碳硼烷衍生物具有燃烧热值高,与配方组分相容性好等特点。在推进剂领域,现阶段主要将其用作高燃速配方的燃速调节剂,可明显提升燃速并兼具其他功能;将其作为高性能燃料可改善富燃料推进剂的燃烧性能、能量性能等,具有良好发展前景。简介了碳硼烷的结构、性质。阐述了碳硼烷衍生物的主要合成方法,并从关键原材料的制备角度分析了制约碳硼烷衍生物应用发展的因素。概括了碳硼烷的四种改性途径。综述了碳硼烷衍生物在国内外军民领域的应用进展,主要总结了其作为功能化燃速调节剂、高性能燃料在推进剂中的研究现状。简介了其在耐高温材料、生物医学材料、光电材料等领域的应用情况。最后,指出未来应针对富燃料推进剂的需求强化功能化碳硼烷衍生物的合成及使用性能研究。  相似文献   

20.
二茂铁(Fc)及其衍生物是AP/HTPB固体复合推进剂的有效燃速催化剂,但在推进剂中的迁移始终是其应用的最大障碍。将二茂铁通过缩合反应接枝到介孔材料SBA-15的表面,制备了一种低迁移催化剂Fc-SBA-15。X射线衍射和N2吸附-脱附实验表明,Fc均匀致密地固定在了SBA-15的内外表面,Fc的负载没有对SBA-15的介孔结构造成破坏。改进的迁移性实验表明,制备的Fc-SBA-15复合材料是一种低迁移的催化剂。Fc-SBA-15对AP的热分解与AP/HTPB推进剂的燃烧具有较好的催化效果,添加2%的Fc-SBA-15使AP的高温热分解峰温度降低64℃,使AP/HTPB固体复合推进剂的燃速提高43%,压强指数下降30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号