首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cardiovascular Actaptation was evaluated on 2 astronauts: one wearing thigh cuffs from flight day 1 to 8 (14d flight), the second without cuffs (21d flight). Ultrasound investigations were performed at rest and during LBNP. Results: Without thigh cuffs the cardiovascular Actaptation consists in (1) the development of a hypovolemia with an increase of the heart rate and the cardiac output, (2) the decrease of the vascular tone in the deep (mesenteric and splanchnic) and peripheral (Lower limbs) vascular areas. The use of thigh cuffs maintains the volemia and the cardiac output at the preflight level (without heart rate increase) and prevents the loss of vascular tone in the deep and peripheral areas. Moreover the adaptative process changes since the cuffs are removed and even the volemia seems to be unaffected at this stage the vascular tone decreases to a comparable extend as during the flight without cuffs. Nevertheless during the flight without cuffs or 3 days after removing the cuffs hemodynamic signs of decreased orthostatic tolerance are present during the inflight and the 3 days post flight LBNP. Presently the possible contribution of the thigh cuffs to the reduction of the vascular deconditioning has not been tested yet.  相似文献   

2.
Lower body negative pressure (LBNP) remains an important device for the generation of orthostatic stress in the space flight environment as well as a tool to measure inflight and postflight changes in orthostatic response.

These applied levels of LBNP have typically not exceeded 50–60 mm Hg negative pressure. Information is incomplete as to the levels of absolute LBNP orthostatic tolerance, and the factors responsible for their variance. A better definition of the tolerance limits for males and females could be expected to aid the evaluation of lower levels of LBNP.

An LBNP device was built to study absolute orthostatic tolerance; additionally, another LBNP device was constructed to permit orthostatic tolerance testing directly after a controlled water immersion period.

Absolute LBNP orthostatic tolerance patterns are analyzed for a group of males and females (series I). A preliminary statement on the variations of LBNP orthostatic tolerance after limited periods of water immersion and bed rest is also provided (series II).  相似文献   


3.
Guell A 《Acta Astronautica》1995,35(4-5):271-280
The article presents the current status of lower body negative pressure (LBNP) as a countermeasure for preventing orthostatic intolerance after space flight or bed rest. Devices discussed include the Chibis vacuum suit, the Anthrorack device, a collapsible device, and an inflatable device. Two bed rest studies examined the effect of LBNP and exercise on orthostatic tolerance; plasma volume; vasopressin, plasma renin activity, and catecholamines; and side effects.  相似文献   

4.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   

5.
Objective: To evaluate the distal arterial, venous and skin changes in a group using thigh cuffs during daytime and in a control group. Method: Cardiac, arterial, venous parameters were measured by echography and Doppler. Skin thickness was measured by high frequency echography. Results & discussion: Head down position induced plasma volume reduction, increased cerebral resistance, reduced lower limb resistance. The jugular vein increased whereas the femoral and popliteal veins decreased. All these changes were already observed in previous HDT. Common carotid diameter decreased, Front head skin thickness increased and Tibial skin thickness decreased. Eight hours with thigh cuffs increased the cardiac and carotid sizes which is in agreement with the plasma volume increase. Conversely they reduced the cerebral vascular resistance, jugular section and front head edema which may explain the sensation of comfort reported by the subjects. At the lower limb level the thigh cuffs restored the skin thickness to pre-HDT level but enlarged markedly the femoral and popliteal veins. HR, BP, CO, TPR did not change.  相似文献   

6.
The cardiovascular function is one of the main disturbed by weightlessness: it is particularly affected by the astronaut's return to Earth, where symptoms linked to the cardiovascular deconditioning syndrom appear in the following forms: (1) orthostatic intolerance with its risk of syncope: (2) higher submaximal oxygen consumption for an equivalent work load. Lower Body Negative Pressure (LBNP) is intended to stimulate the venous system of the lower limbs; however, the specific effects of periodical LBNP sessions on the orthostatic intolerance have never been studied. With this objective in mind, 5 volunteers took part in two recent antiorthostatic bedrest experiments for 30 days. In the first experiment 3 subjects were submitted to several sessions of LBNP experiment per day and 2 others were controls; in the second experiment the LBNP group of the 1st one became controls and vice-versa. Two orthostatic investigations were performed: (1) 5 days before the bedrest; (2) at the end of the 30 day bedrest period. The results showed: (1) when the subjects were control, a high orthostatic intolerance post bedrest with 3 syncopes and one presyncopal state during the first minutes of the tilt test; (2) when the subjects were submitted to LBNP sessions, no orthostatic intolerance.  相似文献   

7.
Cardiovascular assessment by ultrasound methods was performed during two long duration (1 month) Head Down Tilt (HDT) on 6 healthy volunteers. On a first 1 month HDT session, 3 of the 6 subjects (A, B, C) had daily several lower body negative pressure tests (LBNP), whereas the 3 subjects remaining (D, E, F) rested without LBNP. On a second 1 month HDT session subjects D, E, and F had daily LBNP tests and the A, B and C subjects did not. The cardiac function was assessed by Echocardiography, (B mode, TM mode). On all the "6 non LBNP" subjects the left ventricule diastolic volume (LVDV), the stroke volume (SV) and the cardiac output (CO) increase (+10%, -15%) after HDT then decrease and remain inferior (-5%, -5%) or equal to the basal value during the HDT. Immediately after the end of the HDT the heart rate (HR) increase (+10%, +30%) whereas the cardiac parameters decrease weakly (-5%, -10%) and normalize after 3 days of recovery. On the "6 LBNP" subjects the LVDV, SV and CO increase (+10%, 15%) after 1 h HDT as in the previous group then decrease but remain superior (+5%, +15%) or equal to the basal value. After the HDT session, the HR is markedly increased (+20%, +40%) the LVDV and SV decrease (-15%, -20%) whereas the CO increases or decreases depending on the amplitude of the HR variations. These parameters do not completely normalize after 3 day's recovery. Repeated LBNP sessions have a significant effect on the cardiovascular function as it maintains all cardiac parameters above the basal value. The LBNP manoeuvre can be considered as an efficient countermeasure to prevent cardiac disadaptation induced by HDT position and probably microgravity.  相似文献   

8.
Johnson PC 《Acta Astronautica》1979,6(10):1335-1341
The blood volume (BV), plasma volume (PV), and extracellular fluid volume changes produced in crewmembers during spaceflights of 11-84 days were compared to changes after 14 or 28 days of bedrest. Spaceflight and bedrest produce approximately equal BV changes but the recorded PV change after spaceflight was less. However, the diurnal change in PV may explain the smaller decreases recorded after spaceflight. The cardiovascular deconditioning caused by spaceflight and bedrest was compared using the mean heart rate response to lower body negative pressure (LBNP) testing at -50 mmHg pressure. These tests show approximately equal LBNP produced heart rate changes after bedrest and spaceflight. A countermeasure which includes 4 hr of LBNP treatment at -30 mmHg and the ingestion of one l. of saline was studied and found capable of returning the heart rate response and the PV of bedrested subjects to control (prebedrest) levels suggesting that it would be useful to the crewmembers after a spaceflight.  相似文献   

9.
Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.  相似文献   

10.
Iwase S 《Acta Astronautica》2005,57(2-8):75-80
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.  相似文献   

11.
Central and regional hemodynamics in prolonged space flights.   总被引:1,自引:0,他引:1  
This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.  相似文献   

12.
The spontaneous baroreflex response was evaluated during supine rest and head up tilt (60 degrees) before and immediately after a 28 day 6 degrees HDT bedrest in 6 healthy adult men (age 30-42 years). Sequences of 3 or more beats where RR-interval and systolic blood pressure changed in the same direction were used to evaluate baroreflex response slope (BRS). Prior to bedrest, the mean BRS and RR-interval were 18.0 +/- 3.9 ms/mm Hg and 926 +/- 61 ms at rest and 10.5 +/- 2.5 ms/mm Hg and 772 +/- 63 ms during the first 10 min of 60 degrees tilt. Following bedrest, these values changed to 15.6 +/- 2.7 ms/mm Hg and 780 +/- 53 ms at rest, and to 6.5 +/- 1.2 ms/mm Hg and 636 +/- 44 ms during tilt. Thus, (1) the spontaneous baroreflex can be evaluated in human subjects during experiments of orthostatic stress; (2) the baroreflex slope was reduced on going from supine to the head up tilt position; and (3) 28 days of bedrest reduced the spontaneous baroreflex slope.  相似文献   

13.
The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.  相似文献   

14.
In a 45-day experiment test subjects were exposed to bed rest with their heads down at -4 degrees C. Twice a day their muscles of the stomach, back, femur, and shin were stimulated with electric current for 25-30 min. The value of muscle tension was close to their maximum voluntary contraction. The main objective was to prevent muscle atrophy and to maintain their trophic and functional state. Physiological measurements were carried out together with morphological, cytochemical, and biometric evaluations. The tissue removed during biopsy from M. soleus 7 days before the test and on the 30th hypokinetic day was used as substrate. Electrostimulation affected favourably the tone and strength of muscles as well as their static and dynamic endurance. Morphological studies showed a positive effect of electrostimulation on the muscle tissue, preventing the development of atrophic processes. During the first post-hypokinetic day orthostatic tolerance increased.  相似文献   

15.
The hypotheses tested were whether variations in central venous pressure via the low pressure baroreceptors would take over or modify the arterial baroreceptor function, and further to which extent local and "whole body" hydrostatic stresses influence blood flow distribution. We investigated total forearm and skin blood flow (venous occlusion plethysmography and 133-Xe clearance) and cardiac output (rebreathing method) among other parameters. Hypo- and hyper-gravitational stresses were simulated by LBNP, LBPP, water immersion and lowering of the arm. The changes in flow distribution in the arm were ascribed to arterial baroreceptor function and not to low pressure baroreceptor activity. The enhancement of venous return during water immersion increased exercise tolerance during heat stress presumably due both to increased stroke volume and decreased venous pooling. The response to sustained handgrip exercise during LBNP and LBPP was not different from control measurements and the effects explained by arterial baroreceptor function. Application of exercise and local hydrostatic stresses in combination with gravitational stresses represent an interesting model for further study of the mechanisms behind the distribution of cardiac output to the peripheral organs.  相似文献   

16.
The present study examines the prevalence of subjective fatigue in young healthy males during 14 days of 6° head-down bed rest (HDBR) by using a multidimensional questionnaire. Forty-one subjects completed the Subjective Fatigue Scale questionnaire to assess the fatigue-related complaints and symptoms. The questionnaire is composed of three sections, with 10 items each. The sections measured drowsiness and dullness (Section 1), difficulty in concentration (Section 2), and the projection of physical disintegration (Section 3). The subjects answered simple questions between 1400 and 1700 on 6 measurement days before and during the HDBR period. The prevalence rate of low back pain was markedly high (80.5%) on the second day and more than 50% in the first half of the HDBR period, and any complaints related to either a lack of sleep or a deterioration in the quality of sleep continued until the end of the HDBR period. Our findings may be useful in developing preventive strategies against physical and mental fatigue associated with prolonged HDBR, horizontal bed rest, and microgravity environments.  相似文献   

17.
18.
We assessed hemodynamic responses induced by orthostatic and mental stressors, using passive head up tilt (HUT) and mental arithmetic (MA), respectively. The 15 healthy males underwent three protocols: (1) HUT alone, (2) MA in supine position and (3) MA+HUT, with sessions randomized and ≥2 weeks apart. In relation to baseline, HUT increased heart rate (HR) (+20.4±7.1 bpm; p<0.001), mean blood pressure (MBP) (+4.7±11.3 mmHg; p<0.05), diastolic blood pressure (DBP) (+6.1±11.6 mmHg; p<0.05) and total peripheral resistance (TPR) (+155±232 dyne*s/cm5; p<0.001) but decreased stroke volume (SV) (?33.1±13.4 ml; p<0.001) and cardiac output (CO) (?0.6±1.0 l/min; p<0.01). MA increased HR (+8.0±6.0 bpm; p<0.001), systolic blood pressure (SBP) (+9.0±7.7 mmHg; p<0.001), MBP (+10.0±6.5 mmHg; p<0.001), DBP (+9.5±7.2 mmHg; p<0.001) and CO (+0.6±0.8 l/min; p<0.01). MA+HUT increased HR (+28.8±8.4 bpm; p<0.001), SBP (+4.6±14.3 mmHg; p<0.05), MBP (+11.2±11.6 mmHg; p<0.001), DBP (+13.5±10.1 mmHg; p<0.001) and TPR (+160±199 dyne*s/cm5; p<0.001) but SV (?34.5±14.6 ml; p<0.001) decreased. Mental challenge during orthostatic challenge elicited greater increases in heart rate, despite similar reductions in stroke volume such as those during orthostatic stress alone. Overall, cardiac output decreases were less with combinations of mental and orthostatic challenges in comparison to orthostasis alone. This would suggest that carefully chosen mental stressors might affect orthostatic responses of people on standing up. Therefore, additional mental loading could be a useful countermeasure to alleviate the orthostatic responses of persons, particularly in those with histories of dizziness on standing up or on return to earth from the spaceflight environment of microgravity.  相似文献   

19.
Several factors may affect psychomotor performance in space: sensory-motor changes, sleep disturbances, psychological modifications induced by the social isolation and confinement. However, psychomotor performance is difficult to assess. A battery of standardized and computerized tests, so-called "Automated Portable Test System" (APTS) was devised to ascertain the cognitive, perceptive and motor abilities and their possible fluctuations according to environmental effects. Antiorthostatic bedrest, often used to simulate weightlessness, (particularly cardiovascular modifications) also constitutes a situation of social confinement and isolation. During two bedrest experiments (with head-down tilt of -6 degrees) of 28 days each, we intended to assess psychomotor performance of 6 males so as to determine whether: on the one hand, it could be altered by remaining in decubitus; on the other, the Lower Body Negative Pressure sessions, designed to prevent orthostatic intolerance back on Earth, could improve the performance. To accomplish this, part of the APTS tests as well as an automated perceptive attention test were performed. No downgrading of psychomotor performance was observed. On the contrary, the tasks were more accurately performed over time. In order to assess the experimental conditions on the acquisition phase, the learning curves were modelled. A beneficial effect of the LBNP sessions on simple tests involving the visual-motor coordination and attention faculties can only be regarded as a mere trend. Methods used in this experiment are also discussed.  相似文献   

20.
The study of QT/RR relationship is important for the clinical evaluation of possible risk of acquired or congenital ventricular tachyarrhythmias. In the hypothesis that microgravity exposure could induce changes in the repolarization mechanisms, our aim was to test if a short 5-days strict 6° head-down bed-rest (HDBR) could induce alterations in the QT/RR relationship and spatial repolarization heterogeneity. Twenty-two healthy men (mean age 31±6) were enrolled as part of the European Space Agency HDBR studies. High fidelity (1000 Hz) 24 h Holter ECG (12-leads, Mortara Instrument) was acquired before (PRE), the last day of HDBR (HDT5), and four days after its conclusion (POST). The night period (23:00–06:30) was selected for analysis. X, Y, Z leads were derived and the vectorcardiogram computed. Selective beat averaging was used to obtain averages of P–QRS–T complexes preceded by the same RR (10 ms bin amplitude, in the range 900–1200 ms). For each averaged waveform (i.e., one for each bin), T-wave maximum amplitude (Tmax), T-wave area (Tarea), RTapex, RTend, ventricular gradient (VG) magnitude and spatial QRS-T angle were computed. Non-parametric Friedman test was applied. Compared to PRE, at HDT5 both RTapex and RTend resulted shortened (−4%), with a decrease in T-wave amplitude (−8%) and area (−13%). VG was diminished by 10%, and QRS-T angle increased by 14°. At POST, QT duration and area parameters, as well as QRS-T angle were restored while Tmax resulted larger than PRE (+5%) and VG was still decreased by 3%. Also, a marked loss in strength of the linear regression with RR was found at HDT5 in Tmax and Tarea, that could represent a new dynamic marker of increased risk for life-threatening arrhythmias. Despite the short-term HDBR, ventricular repolarization during the night period was affected. This should be taken into account in astronauts for risk assessment during space flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号