首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streamer evaporation is the consequence of heating in ideal MHD models because plasma is weakly contained by the magnetic field. Heating causes inflation, opening of field lines, and release of solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because of losses by thermal conduction and radiation. Heating is also expected to depend on ambient conditions. We use a global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than ∼ 2 × 106 K. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Particle acceleration in large-scale turbulent coronal magnetic fields is considered. Using test particle calculations, it is shown that both cellular automata and three dimensional MHD models lead to the production of relativistic particles on sub-second timescales with power law distribution functions. In distinction with the monolithic current sheet models for solar flares, particles gain energy by multiple interactions with many current sheets. Difficulties that need to be addressed, such as feedback between particle acceleration and MHD, are discussed.  相似文献   

3.
The goal of mission-oriented theory is to develop techniques and models which can be used by experimentalists and theorists to interpret spacecraft measurements, deducing from them the maximum amount of information about both local and large-scale dynamics. To be effective, theorists and experimentalists must express their results in a common format. A reasonable starting point is for mission theorists to adopt the format currently used by experimentalists. To this end we have developed new diagnostics for plasma kinetic simulations, which display the results in formats very similar to those commonly used to present satellite wave and particle measurements. We have used a simulation of broadband electrostatic noise to demonstrate how, by comparing simulation results with observations, we can infer quantities which cannot be measured, such as the wave mode. We are also developing the capability of creating data streams from virtual spacecraft located in the simulation region. For example, we used a kinetic magnetopause simulation to explore the ways in which simulations can assist in the interpretation of single and multiple satellite measurements in regions of strong spatial inhomogeneity. To address directly the mission objective of measuring global transport, global MHD models are employed. In order to facilitate the initial comparison with ISTP satellites, time histories of simulated generic states of the magnetosphere will be stored on optical disks; these will then be used to create dynamical displays of both local parameters and the global configuration. Finally we demonstrate the use of data based phenomenological magnetic field models in single particle trajectory calculations to describe large-scale kinetic properties of the magnetospheric plasma. We briefly discuss the success of large-scale kinetic calculations in delineating the structure of the plasma sheet, and present some possible ISTP research initiatives which can be used to determine the structure of the very distant tail and the entry of plasma into the tail.  相似文献   

4.
Several Active Galactic Nuclei (AGNs) have been reported to harbor fast outflows exceeding 10,000 km?s?1, which are detected mostly in their low-resolution CCD X-ray spectra. Only few, however, were detected with high-resolution grating spectrometers. Most of the grating detected outflows have been observed multiple times. In these cases, the absorption spectrum changes are indicating that variability is common among these high-velocity winds. In this paper we revisit the grating observations of PG?1211+143, and PDS?456, and report preliminary results on 4C?74.26. We discuss the spectral variability of the first two sources and its implications to the outflows.  相似文献   

5.
Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.  相似文献   

6.
A great deal of the research done on the dynamical process of the solar wind- magnetosphere interaction is based on large-scale, quasi-steady theoretical models, such as the classical reconnection model. However, it can be argued that the theoretical and observational foundations of these commonly believed paradigms are not always strong, and support for these models is sometimes weak, controversial or inconsistent. This paper discusses the need for a transition from an oversimplified quasi-steady paradigm towards a more realistic one including the dynamics of MHD waves and wave packets. The effects of localized wave packets may be most important in active plasma regions, where ideal MHD breaks down and localized, time-dependent processes become dominant. New insights into the theories of field-aligned current generation, auroral particle acceleration and the concept of reconnection may be found by including MHD wave propagation and wave packet dynamics.  相似文献   

7.
The heating of the solar atmosphere is a fundamental problem of modern solar and astrophysics. A review of the seismological aspects of magnetohydrodynamic (MHD) waves with an emphasis on standing longitudinal waves in the context of coronal heating is presented. Efforts made recently may be split into two categories: forward modelling and data inversion. Forward modelling can be applied to predict the observational footprints of various heating scenarios. A new diagnostic method based on the analysis of Doppler shift time series is outlined with specific application to solar coronal conditions. The power of the method is demonstrated and tested using synthetic data and comparing them with actual high-resolution (e.g. SoHO/SUMER) observations. Further, related recent examples of standing longitudinal oscillations in coronal loop structures observed with the new Hinode/EIS instrument are also presented. These latter observations provide an advanced ground for MHD seismology as a tool for plasma heating diagnostics in the atmosphere of the Sun.  相似文献   

8.
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real-time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations.  相似文献   

9.
磁流体湍流中存在多种相干结构,包括电流和涡旋结构。文章主要对近几年有关磁流体湍流相干结构及其相关的能量传输的一些工作进行了介绍。不同于中性流体湍流中的管状结构,磁流体中的相干结构多呈现为片状,强电流片附近也存在强涡片结构。磁流体湍流中的能量级串使能量跨尺度从大尺度传递至小尺度;与中性流体湍流能量传输主要集中在相近尺度上不同,磁流体湍流除了动能传输,还有磁能传输,以及动能与磁能之间的跨尺度互相转换。研究表明,磁流体湍流中的能量传输及耗散具有强间歇性,集中在较小区域范围,且与相干结构存在关联。在存在背景磁场的情况下,磁流体湍流中的相干结构在背景磁场方向上被拉长,而同样方向上的能量传输受到抑制。在高马赫数的情况下,激波的产生会使能量传输明显增强,同时带来很强的间歇性,结构函数标度律远远偏离线性标度关系,并且随着阶数的增加,标度指数会达到饱和值。  相似文献   

10.
We present soft X-ray observations of helmet structures in solar active regions obtained from SXT/Yohkoh. These helmet structures are observed to form in the flare decay phase and to be associated with active region loop interactions. Their morphology is similar to the much larger scale helmet streamers that appear in the outer corona as shown in optical images of solar eclipse. The observed X-ray helmet structures appear to be in quasi-equilibrium with lifetimes greater than the MHD time scale. Using the filter ratio method for the X-ray observations, we find that the cusp region has lower temperature and higher density than that in the stalk region above it. The plasma pressure in the cusp region is about the same or slightly higher than that in the stalk region.  相似文献   

11.
Recent developments in the field of numerical simulation models for the study of shock wave propagation in the corona are presented. These models are based on gasdynamic (GD) and ideal (that is, dissipationless, except at shocks) magnetohydrodynamic (MHD) theories. The characteristics and physical interpretations of the results derived from these models are discussed in some detail.The most significant physical results obtained to date are provided by the two-dimensional non-planar, time-dependent, MHD numerical simulation model. In this model, the non-linear interaction among the three essential MHD waves, i.e., fast-, slow-, and Alfvén waves are demonstrated. Finally, the physical relevance of these numerical simulation models in relation to observed solar activity is presented.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

12.
为了快速分析磁流体管流,采用涡轮喷气发动机模型对磁流体管流进行类比分析,引入变截面管流理论和修改过的多变效率表达式,推导了磁流体发电器和加速器的准一维模型,采用二维数值方法验证了准一维模型的可行性,利用该准一维模型对磁流体管流进行了性能分析,结果表明,多变效率的引入使准一维模型更加完整,当负载系数不变时,磁流体装置中的平均马赫数越低,其等熵效率越高。  相似文献   

13.
Conclusion Much has been learned about the structure and dynamics of the outer heliosphere during the last decade as a result observations from the Voyager and Pioneer spacecraft. The large scale of the observations forces one to consider the heliosphere from a new perspective, to think of new dynamical processes, and to introduce new concepts. The early studies of isolated gas dynamic flows must be replaced by MHD dynamics of interacting flows and flow systems. The simple deterministic models that have been dominant in early studies of the solar wind are now seen to have limited applicability, and statistical approaches are being developed. New concepts that have been introduced, such as inverse cascades, filtering, entrainment, etc., must be further explored and clarified, to make them more precise and quantitative. MHD turbulence is probably very important in solar wind dynamics, but the subject is poorly developed from a theoretical point of view. The statistical analysis of solar wind parameters has scarcely begun, but it is clearly necessary for an understanding of complex, large-scale flows. The multitude of possible interactions among shocks and flows of various types needs to be explored systematically with observations, models and analytical theory. Voyagers 1 and 2 and Pioneers 10 and 11 are continuing to move through the outer heliosphere and gather data. The lengthy data reduction procedures require even more care in dealing with the low field strengths, densities and temperatures at large heliocentric distances, and the analysis of the complex flows and fields in the outer heliosphere becomes increasingly difficult. Thus one can expect continued growth of our knowledge of the heliosphere, but comprehensive understanding of the data will take some time. If this review stimulates the specialists in solar wind physics to think critically about the results presented and to remedy the deficiencies of current knowledge of the heliosphere, then it will have served its purpose. It is also hoped that this review will serve to encourage specialists in other fields to bring their talents to bear on heliospheric problems and to transfer results of heliospheric physics to their fields.  相似文献   

14.
Hada  Tohru  Koga  Daiki  Yamamoto  Eiko 《Space Science Reviews》2003,107(1-2):463-466
Large amplitude MHD waves are commonly found in the solar wind. Nonlinear interactions between the MHD waves are likely to produce finite correlation among the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in quasi-linear theories) or they have a finite coherence. Using a method based on a surrogate data technique and a fractal analysis, we analyzed Geotail magnetic field data (provided by S. Kokubun and T. Nagai through DARTS at the Institute of Space and Astronautical Science) to evaluate the phase coherence among the MHD waves in the earth's foreshock region. The correlation of wave phases does exist, indicating that the nonlinear interactions between the waves is in progress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Recent high temporal and spatial resolution satellite observations of the solar corona provide ample evidence of oscillations in coronal structures. The observed waves and oscillations can be used as a diagnostic tool of the poorly known coronal parameters, such as magnetic field, density, and temperature. The emerging field of coronal seismology relies on the interpretation of the various coronal oscillations in terms of theoretically known wave modes, and the comparison of observed and theoretical wave mode properties for the determination of the coronal parameters. However, due to complexity of coronal structures the various modes are coupled, and the application of linear theory of idealized structures to coronal loops and active regions limits the usefulness of such methods. Improved coronal seismology can be achieved by the development of full 3D MHD dynamical model of relevant coronal structures and the oscillation phenomena. In addition to improved accuracy compared to linear analysis, 3D MHD models allow the diagnostic method to include nonlinearity, compressibility, and dissipation. The current progress made with 3D MHD models of waves in the corona is reviewed, and the challenges facing further development of this method are discussed in the perspective of future improvement that will be driven by new high resolution and high cadence satellite data, such as received from Hinode and STEREO, and expected from SDO.  相似文献   

17.
The Wind spacecraft made 26 perigee passes through the near-earth plasma sheet region during 1994 to 1997. Nearly all of these passes obtained plasma data from substorms and bursty bulk flow (BBF) events. New features of ion distributions have been observed in both the plasma sheet boundary layer (PSBL) and the central plasma sheet (CPS) in the vicinity of the current sheet that are relevant for understanding the structure of the PSBL and the mechanisms of particle acceleration to MeV energies associated with the BBF events. Kinetic processes are key to understanding these new observations that are not adequately explained by existing magnetohydrodynamics (MHD) models and theories. This article will feature the phase space distribution functions as the primary data product. The main purpose of this article is to establish an observational framework for new improved models and theories. The new observations should challenge modelers and theorists.  相似文献   

18.
Magnetohydrodynamic (MHD) theory has been used in space physics for more than forty years, yet many important questions about space plasmas remain unanswered. We still do not understand how the solar wind is accelerated, how mass, momentum and energy are transported into the magnetosphere and what mechanisms initiate substorms. Questions have been raised from the beginning of the space era whether MHD theory can describe correctly space plasmas that are collisionless and rarely in thermal equilibrium. Ideal MHD fluids do not induce electromotive force, hence they lose the capability to interact electromagnetically. No currents and magnetic fields are generated, rendering ideal MHD theory not very useful for space plasmas. Observations from the plasma sheet are used as examples to show how collisionless plasmas behave. Interpreting these observations using MHD and ideal MHD concepts can lead to misleading conclusions. Notably, the bursty bulk flows (BBF) with large mean velocities left( v ≥400 km s right) that have been interpreted previously as E×B flows are shown to involve much more complicated physics. The sources of these nonvanishing v events, while still not known, are intimately related to mechanisms that create large phase space gradients that include beams and acceleration of ions to MeV energies. The distributions of these nonvanishing v events are associated with large amplitude variations of the magnetic field at frequencies up to and exceeding the local Larmor frequency where MHD theory is not valid. Understanding collisionless plasma dynamics such as substorms in the plasma sheet requires the self-consistency that only kinetic theory can provide. Kinetic modeling is still undergoing continual development with many studies limited to one and two dimensions, but there is urgent need to improve these models as more and more data show kinetic physics is fundamentally important. Only then will we be able to make progress and obtain a correct picture of how collisionless plasmas work in space.  相似文献   

19.
针对弹道中段目标微特征难以识别与分辨的问题,提出了一种基于低分辨雷达和高分辨雷达相结合的混合体制雷达网的有翼弹道目标微特征及外形参数提取方法。依据非线性信号参量可分离模型,利用非线性最小二乘估计方法解算出有翼弹道目标群各散射中心的幅相参数,结合不同雷达提取的微特征的关联性,利用散射中心关联处理实现了各类散射中心的分离。在此基础上,利用弹道目标的微特征,结合弹道目标各散射中心的相对位置关系,重构出各目标的三维微特征及各散射中心的三维位置矢量,进而估计出目标的进动特征和结构参数。仿真结果表明:当信噪比(SNR)为5 dB时,该方法的重构精度保持在92%左右。  相似文献   

20.
Observations of plasma and magnetic fields by Pioneer 10 and 11 and Voyager 1 and 2 reveal that MHD shocks are an important component of the large-scale solar wind structures in the outer heliosphere. This review discusses recent progress in simulation studies of the nonlinear evolution of the solar wind structures, and in particular concentrates on the theoretical development and applications of the shock interactions model. Various stream propagation models, which do not use the Rankine-Hugoniot relations to calculate the jump conditions at shock crossings, have been used to simulate the essential evolution process of isolated streams and the formation and propagation of corotating and transient shocks. They produce fairly good results in the region up to a few AU. In 1984, the shock interactions model was introduced to study the evolution of large-scale solar wind structures in the region outside 1 AU up to several tens of AU. The model uses the exact Rankine-Hugoniot relations to calculate the shock speed and shock strength at all shock crossings. So that the model can more accurately calculate the shock speeds and the accumulated irreversible shock heating of plasma at several tens of AU. The applications of the shock interactions model are presented in three groups. (a) The first group covers the basic interaction of a shock with the ambient solar wind, the formation and propagation of shock pairs, and the collision and merging of shocks. (b) The second group covers the use of the shock interactions model to simulate the nonlinear evolution of large-scale solar wind structures in the outer heliosphere. These simulation results can provide the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. Two selected studies are reported. (c) Finally, the shock interactions model is applied to studying the heating of the solar wind in the outer heliosphere. The model calculations support shocks being chiefly responsible for the heating of the solar wind plasma in the outer heliosphere at least up to 30 AU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号