首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以激光/电子束为代表的高能束流加工是航空装备研制中不可或缺的技术,也是当今先进制造技术发展的前沿领域。本文分别介绍了高能束流加工技术在航空结构的焊接、增材制造、表面改性中的应用:激光/电子束焊接实现了飞行器大尺寸机身结构与航空发动机结构的整体化。激光/电子束增材制造实现了复杂结构的轻量化与快速成形,并广泛应用于发动机叶片修复。在表面改性方面,激光冲击强化大幅改善了航空结构的疲劳性能;超快激光可用于涡轮叶片气膜孔的高精度制备以及表面微纳功能结构的制备;电子束加工出的表面尖峰大幅提升了金属-复材接头的强度。最后,从新材料、新结构、加工过程质量监控这3个方向对高能束流加工技术的发展趋势进行了展望。  相似文献   

2.
简要回顾了增材制造技术在航空钛合金领域的发展历程及应用现状,从成形效率、零件尺寸、零件复杂度、材料利用率、表面质量等方面比较了基于直接能量沉积技术与粉末床熔化技术的5种增材制造方法的特点及适用范围,阐述了粉末床熔化技术在推动航空钛合金结构轻量化设计与低成本制造方面的优势。以Ti-6Al-4V为例,分析了增材制造熔池中的物理过程对柱状晶显微组织形成与力学性能各向异性的影响,总结了业界在过程监控与质量控制方面的初步成果以及现有增材制造标准对材料、工艺、检测等方面的要求。最后,介绍了增材制造钛合金零件的成本构成与计算模型,提出了适合采用增材制造工艺的零件特点,并对航空钛合金增材制造的未来进行了展望。  相似文献   

3.
增材制造技术在航空装备深化应用中的研究   总被引:1,自引:0,他引:1  
增材制造技术对飞机结构研制起到了重要作用,但其应用潜力尚未完全发挥.通过梳理增材制造技术在航空装备中的应用现状与特点,分析了增材制造技术在航空领域的应用发展趋势,并从结构设计、专用材料、制造工艺、性能验证4个方面对制约增材制造技术全面深化应用的关键因素进行了分析探讨.  相似文献   

4.
增材制造技术通过材料逐层打印制备结构,为复杂构件制造提供了新的成形方式。拓扑优化因不依赖于初始构型的选择,可设计出传统理念难以获得的创新构型,已成为航空航天和高端装备领域高性能、轻量化结构设计的重要手段。拓扑优化与增材制造有机融合,充分发挥各自优势和潜力,在现代制造业中展现出广阔应用前景。回顾了近年来关于增材制造与拓扑优化技术融合研究的主要内容和应用成果,包括以材料结构一体化为核心的多尺度/多层级结构优化设计、以设计制造一体化为核心的考虑增材制造工艺约束的优化方法等。同时,也分析了未来研究工作中存在的问题与挑战,如点阵结构性能表征及其尺度关联效应、增材制造材料成形各向异性、功能梯度材料与结构、增材制造材料与结构疲劳特性等对设计方法和成形工艺带来的挑战,为未来相关研究工作和航空航天应用提供参考。  相似文献   

5.
增材制造——面向航空航天制造的变革性技术   总被引:1,自引:0,他引:1  
增材制造技术在航空航天应用方面具有单件小批量的复杂结构快速制造优势,未来将向着设计、材料和成形一体化方向发展。分析了增材制造在航空航天领域应用发展的3个层面,以航空发动机涡轮叶片增材制造、高性能聚醚醚酮(PEEK)及其复合材料、连续纤维增强树脂复合材料及太空3D打印为主题,介绍了增材制造技术国内外以及西安交通大学的研究状况。涡轮叶片应用增材制造工艺可以有效提高效率降低成本,未来向高性能的高温合金和陶瓷基复合材料增材制造技术发展。高性能轻质聚合物PEEK及其复合材料增材制造在高力学性能结构件、吸波功能件的成形中得到应用,将改变现有的设计与材料,推动结构与功能一体化发展。连续纤维复合材料增材制造将带动无模具纤维复合材料成形的新发展,在太空3D打印将改变未来航空航天制造模式。增材制造技术将给航空航天制造技术带来变革性发展。  相似文献   

6.
江西省航空构件成形与连接重点实验室依托南昌航空大学航空制造工程学院,围绕航空发动机、大飞机、高空高速无人机、高级教练机等飞行器开展关键构件成形与连接的基础理论、关键技术研究和成套装备的开发、应用。实验室充分利用学校在航空制造领域的技术优势,围绕航空产业急需的关键航空制造技术开展研究,以突破关键技术严重依赖国外的瓶颈、建设一流技术创新平台、提升产业核心竞争力为目标,在航空制造先进焊接技术、航空构件精密成形技术、高效高精密加工技术和航空构件增材制造技术等领域建立创新平台,开展基础理论与应用技术研究,研发高精尖装备,并以项目为牵引,创新高校人才培养模式、为航空工业提供人才支撑。  相似文献   

7.
围绕飞行器复杂结构整体构型研制的高性能、轻量化苛刻需求,着重介绍了面向增材制造的结构优化设计面临的系列关键问题以及相关研究成果。分别从面向增材制造的结构多承载环节整体优化建模与性能分析、整体结构多学科性能与功能综合设计方法、跨尺度结构-微结构性能表征与尺度效应的影响机理,以及增材制造工艺对整体结构件性能的影响机理和制造工艺约束4个方面,阐述如何从结构力学与工艺力学角度科学实现最优性能设计与先进增材制造技术的完美匹配与融合。  相似文献   

8.
增材制造技术在航空装备领域具有广泛的发展前景。作为重要的金属增材制造工艺方法,电子束增材制造正处于快速发展阶段。电子束熔丝增材制造技术可满足航空大尺寸结构件的快速低成本制造,并可用于高价值零件的修复。电子束选区熔化增材制造技术在复杂结构以及难熔合金制件的制造方面具有显著优势。本文在对国内外电子束增材制造技术现状和发展趋势分析的基础上,从发展需求、目标、共性关键技术、应用、战略支撑与保障5个方面综合分析,绘制了面向2035年的航空装备电子束增材制造技术路线图,以期为航空装备电子束增材制造技术发展提供参考。  相似文献   

9.
电弧增材制造研究现状及在航空制造中应用前景   总被引:1,自引:0,他引:1  
电弧增材制造采用逐层堆焊的方式制造致密金属实体构件,因以电弧为载能束,热输入高,成形速度快,适用于大尺寸复杂构件低成本、高效快速近净成形。面对新一代飞行器制造成本及可靠性要求,其结构件逐渐向大型化、整体化、智能化发展,电弧增材制造技术在大尺寸航空结构件成形上具有其他增材技术不可比拟的效率与成本优势。本文综述了电弧增材制造技术研究现状,并结合该技术特征及国内增材制造技术研究规划,评述了我国在该技术领域的发展际遇与挑战,指出其在航空制造领域的发展前景及意义。  相似文献   

10.
4D打印技术是最近一段时间快速发展的新兴增材制造技术,对飞机等航空航天装备的结构智能化发展具有重大前瞻性意义。本文论述了战斗机的发展及对多功能结构的需求,阐述了4D打印在实现飞机功能融合方面的重要作用;探讨了4D打印的定义、专用材料、工艺装备及结构构型特征;讨论了4D打印在航空飞行器智能变体结构、新一代热防护及新型隐身技术方面的应用潜力;给出了4D打印的技术成熟度提升、关键技术突破及学科融合方面的发展建议。  相似文献   

11.
激光选区熔化(SLM)是一种通过使用激光熔化金属粉末层成形的增材制造工艺,没有传统工艺的设计约束。但基于SLM的结构设计也需遵循一定的设计规则,从而兼顾效率、成本和成形稳定性。本文对轻量化航空铝合金支架的SLM工艺性进行分析,包括成形时间、消耗、后处理难度和稳定性。后结合SLM成形特点对原始结构进行重新设计,研究更复杂结构的机械性能和SLM工艺性,得到一个优化结构。优化结构重量减轻24.5%,工况加权刚性提升38.3%,位移量最大减少32.7%,在缩放系数为0.5的条件下,成形时间减少38.6%,材料用量大幅减少65.6%,优化结构没有内部支撑,后处理难度得以降低,整体成形稳定性提升明显。  相似文献   

12.
激光增材制造支持结构设计创新、快速研制和验证,是当前航空装备领域最具代表性的增材制造方法,其中激光选区熔化主要应用于复杂精密功能结构的精确近净成形制造,激光直接沉积主要用于大尺寸复杂承载结构的制造。为支撑航空领域增材制造技术发展的战略布局,本文对激光增材制造现状和发展趋势进行梳理,指出增材制造发展重点必然会转向产品的冶金质量、力学性能及其稳定性控制方面,增材制造设备的在线监测、参数自整定控制等智能化功能的研究开发正成为设备的研发热点,基于损伤失效分析、寿命预测研究的增材制件力学行为研究以及基于元件、特征结构的性能考核验证技术,开始引起工程应用部门的关注。在对技术发展趋势分析的基础上,提出2035年航空领域激光增材制造技术发展目标和相应的政策和环境支撑、保障需求,并给出2035年技术发展路线图建议。  相似文献   

13.
张纪奎  孔祥艺  马少俊  刘栋  王新波  冯军  王华明 《航空学报》2021,42(10):525430-525430
随着损伤容限设计理念发展和轻量化要求提高,高强高韧钛合金逐渐成为航空装备关键主承力构件主要结构材料。激光增材制造制备钛合金大型主承力构件具有数字化、短周期、低成本等技术优势,特别是激光增材制造过程超常固态相变动力学条件为制备高强高韧钛合金提供了新的机会。本文根据航空主承力结构选材性能要求,对激光增材制造TC11钛合金静强度、疲劳和损伤容限特性进行测试与分析,在此基础上对其在航空主承力结构的应用前景进行分析。结果表明,激光增材制造TC11钛合金力学性能具有显著的高强高韧和低屈强比特征,其疲劳缺口敏感性和裂纹扩展速率低,性能分散性小,综合性能满足航空主承力结构选材要求。与目前航空主承力结构广泛应用的TC4-DT损伤容限型钛合金相比,激光增材制造TC11高强高韧钛合金损伤容限特性相当、疲劳性能有所改善、许用应力提高23%,结构具有进一步减重优势。激光增材制造TC11钛合金优异的强韧性匹配在提高结构许用应力的同时可避免大厚度结构发生脆性断裂,其低疲劳缺口敏感性和优异的疲劳裂纹扩展特性对于结构服役安全具有重要意义。  相似文献   

14.
拓扑优化与增材制造结合:一种设计与制造一体化方法   总被引:1,自引:0,他引:1  
被誉为"第三次工业革命"的增材制造技术通过材料层层累加的方式实现结构的制备,这种独特的制造方式实现了高度复杂结构的自由"生长"成形,极大地拓宽了设计"空间",为新型结构及材料的制备提供了强大的工具。制造工艺的飞速发展往往需要设计技术的快速跟进,拓扑优化方法因其不依赖初始构型及工程师经验,可获得完全意想不到的创新构型,已成为结构创新设计的重要工具。因此,将拓扑优化(先进设计技术)与增材制造(先进制造技术)融合,发展面向增材制造的创新设计技术具有广阔的前景。从面向增材制造的优质结构构型设计以及考虑增材制造工艺约束的拓扑优化设计方法两个方面,介绍了现阶段基于拓扑优化方法所建立的结构创新设计理论,并指出未来研究的趋势。  相似文献   

15.
电弧熔丝增材制造技术(wire arc additive manufacturing,WAAM)是一种高沉积效率的增材制造技术,采用逐层堆积的方式制备多种高性能的金属结构件,针对航空装备的大型、中等复杂的铝合金、钛合金WAAM成形技术的研究获得广泛关注。本文对WAAM技术定义、技术分类、成形系统及原理进行论述,综述了近年来国内外航空航天领域WAAM成形铝合金、钛合金的组织特性、冶金缺陷及质量改善、典型构件技术应用等方面的研究进展,分析了目前航空装备的大型、中等复杂构件WAAM成形技术所面临的关键共性问题,并提出了2035年WAAM成形技术路线规划图。  相似文献   

16.
基于激光增材制造技术可快速、精确地制造出任意复杂形状零件的特点,以带复杂冷却内腔结构的航空发动机涡轮叶片为研究对象,对激光增材制造技术在涡轮叶片制备过程中的工程应用特点和难点进行了研究,并提出相应解决措施。研究结果显示,激光增材制造技术在降低零件制造成本和减少零件交货周期方面具有显著优势,但在材料力学性能、表面粗糙度、位置及型面公差、气膜孔收缩率及机械加工定位点等方面依然存在挑战。  相似文献   

17.
激光直接沉积成形对于飞机起落架制造具有"变革性"意义,具有突破规格限制、减少原材料浪费、缩短加工制造周期等技术优点,在未来飞机起落架快速试制方面具有较为明显的技术优势及应用前景。目前已突破A-100钢激光直接沉积增材制造成形工艺、性能质量控制等关键技术,试制的起落架零件已在飞机上实现领先试用,力学性能基本达到材料锻件水平。但面向该技术的推广应用仍面临着成形工艺策略、热处理控制、无损检测、构件表面强化及综合验证等关键技术的进一步突破。  相似文献   

18.
复杂高筋薄壁构件在航天飞行器中被广泛应用,整体制造是实现这类构件轻量化的重要途径,也是当前制造领域最具有挑战的工程难题之一,其中旋压-增材复合制造代表了复杂高筋薄壁构件整体制造的前沿。近几年,本文作者研究团队在复杂航天薄壁筒段旋压-增材复合制造方向上开展了较为系统的研究工作。从内筋薄壁筒段旋压成形和等材-增材复合制造两个角度对国内外学者研究工作进行总结;同时,从内筋铝合金筒段旋压断裂机制与组织演变规律、筒壁内增材热力学行为与组织调控、旋压-增材复合制造工艺等方面介绍了当前初步研究成果,并对旋压-增材复合制造技术的发展进行了展望。比较全面地梳理了复杂高筋薄壁筒段复合制造技术现状和发展趋势,为复杂薄壁构件整体制造技术研究提供指导。  相似文献   

19.
新一代航天器技术的快速发展对结构件超强承载、极端防热、超高精度和超轻量化提出了越来越苛刻的要求,如何设计并制造出高性能、轻量化、超精密的航天薄壁构件成为先进材料与结构设计制造领域普遍关注的难题。本文综述了近年来薄壁构件高性能设计与制造及其航天应用的主要成果,围绕材料-结构多尺度建模与性能表征、多材料多尺度结构设计与增材制造原理、增材制造材料性能与结构设计的交互作用机制等科学问题,就结构优化中的制造工艺约束建模,增材制造工艺参数对结构性能的影响,高性能构件材料-结构一体化设计方法及其在航天结构中的应用展开论述,并展望了未来典型航天薄壁构件材料-结构一体化设计和制造方法发展前景与应用,为未来相关研究工作和航空航天装备研发提供参考。  相似文献   

20.
近年国外发展起一套新的超声波增材制造技术,它采用大功率超声能量,以金属箔材作为原材料,利用金属层与层之间振动摩擦产生的热量,促进界面间金属原子相互扩散并形成界面固态物理冶金结合,从而实现金属带材逐层叠加的增材制造成形,同时将固结增材过程与数控铣削等减材工艺相结合,实现了超声波成形与制造一体化的超声波增材制造技术.与高能束金属快速成形技术相比,超声波增材制造技术具有温度低、无变形、速度快、绿色环保等优点,适合复杂叠层零部件成形、加工一体化智能制造,在航空航天、武器装备、能源、交通等尖端领域有着重要的应用前景.本文介绍了超声波增材制造技术的原理及发展,以及该技术在叠层复合材料的制备和零部件制造等方面的应用,同时介绍了国内超声波增材制造技术的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号