首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

2.
Many practical problems arise when implementing digital terrain data in airborne knowledge-aided (KA) space-time adaptive processing (STAP). This paper addresses these issues and presents solutions with numerical implementations. In particular, using digital land classification data and digital elevation data, techniques are developed for registering these data with radar return signals, correcting for Doppler and spatial misalignments, adjusting for antenna gain, characterizing clutter patches for secondary data selection, and ensuring independent secondary data samples. These techniques are applied to select secondary data for a single-bin post-Doppler STAP algorithm using multi-channel airborne radar measurement (MCARM) program data. Results with the KA approach are compared with those obtained using the standard sliding window method for choosing secondary data. These results illustrate the benefits of using terrain information, a priori data about the radar, and the importance of statistical independence when selecting secondary data for improving STAP performance  相似文献   

3.
This paper describes an innovative concept for knowledge-based control of space-time adaptive processing (STAP) for airborne early warning radar. The knowledge-based approach holds potential for significant performance improvements over classical STAP processing in nonhomogeneous environments by taking advantage of a priori knowledge. Under this approach, knowledge-based control is used to direct pre-adaptive filtering, and to carefully select STAP algorithms, parameters, and secondary data cells  相似文献   

4.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   

5.
Optimal and adaptive reduced-rank STAP   总被引:1,自引:0,他引:1  
This paper is concerned with issues and techniques associated with the development of both optimal and adaptive (data dependent) reduced-rank signal processing architectures. Adaptive algorithms for 1D beamforming, 2D space-time adaptive processing (STAP), and 3D STAP for joint hot and cold clutter mitigation are surveyed. The following concepts are then introduced for the first time (other than workshop and conference records) and evaluated in a signal-dependent versus signal independent context: (1) the adaptive processing “region-of-convergence” as a function of sample support and rank, (2) a new variant of the cross-spectral metric (CSM) that retains dominant mode estimation in the direct-form processor (DFP) structure, and (3) the robustness of the proposed methods to the subspace “leakage” problem arising in many real-world applications. A comprehensive performance comparison is conducted both analytically and via Monte Carlo simulation which clearly demonstrates the superior theoretical compression performance of signal-dependent rank-reduction, its broader region-of-convergence, and its inherent robustness to subspace leakage  相似文献   

6.
Space-time adaptive radar performance in heterogeneous clutter   总被引:2,自引:0,他引:2  
Traditional analysis of space-time adaptive radar generally assumes the ideal condition of statistically independent and identically distributed (IID) secondary data. To the contrary, measured data suggests realistic clutter environments appear heterogeneous and so the secondary data is no longer IID. Heterogeneity leads to mismatch between actual and estimated covariance matrices, thereby magnifying the loss between the adaptive implementation and optimum condition. Concerns regarding the impact of clutter heterogeneity on space-time adaptive processing (STAP) warrant further study. To this end, we propose space-time models of amplitude and spectral clutter heterogeneity, with operational airborne radar in mind, and then characterize expected STAP performance loss under such heterogeneous scenarios. Simulation results reveal loss in signal-to-interference plus noise ratio (SINR) ranging between a few tenths of a decibel to greater than 16 dB for specific cases  相似文献   

7.
Space-time adaptive processing (STAP) has been widely discussed for airborne radar systems to improve the system performance of detecting targets. This is especially true for airborne early warning (AEW) radar, which should find long-range and small radar cross section (RCS) targets such as the stealth aircraft and missiles. However, in existing airborne radar literature, STAP is mainly considered for clutter and jamming rejection in side-looking airborne radar (SLAR) applications. There have been fewer discussions on airborne radar with non-side-ways looking array radar (non-SLAR). The STAP of non-SLAR such as forward looking array radar is also very important and can not be avoided for airborne radar to detect targets in all directions. The STAP of the non-SLAR is studied here. A scheme has been proposed, which is processed by the way of STAP combined with multiple staggered medium pulse repetition frequencies (PRFs). We further study the selection of PRFs in order to make the scheme more available for non-SLAR radar. We analyze two typical non-SLAR cases, i.e., inclined-sideways looking array and forward looking array. We examine this scheme by comparing the performances of three processing systems under the criteria of range-velocity blind zone minimization. Computer simulation results show the multiple-PRFs STAP scheme is feasible for non-SLAR and can be applied to phased-array AEW radar systems  相似文献   

8.
The use of adaptive linear techniques to solve signal processing problems is needed particularly when the interference environment external to the signal processor (such as for a radar or communication system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive techniques require a certain amount of data to cancel the external interference. The number of statistically independent samples per input sensor required so that the performance of the adaptive processor is close (nominally within 3 dB) to the optimum is called the convergence measure of effectiveness (MOE) of the processor. The minimization of the convergence MOE is important since in many environments the external interference changes rapidly with time. Although there are heuristic techniques in the literature that provide fast convergence for particular problems, there is currently not a general solution for arbitrary interference that is derived via classical theory. A maximum likelihood (ML) solution (under the assumption that the input interference is Gaussian) is derived here for a structured covariance matrix that has the form of the identity matrix plus an unknown positive semi-definite Hermitian (PSDH) matrix. This covariance matrix form is often valid in realistic interference scenarios for radar and communication systems. Using this ML estimate, simulation results are given that show that the convergence is much faster than the often-used sample matrix inversion method. In addition, the ML solution for a structured covariance matrix that has the aforementioned form where the scale factor on the identity matrix is arbitrarily lower-bounded, is derived. Finally, an efficient implementation is presented.  相似文献   

9.
Median cascaded canceller for robust adaptive array processing   总被引:2,自引:0,他引:2  
A median cascaded canceller (MCC) is introduced as a robust multichannel adaptive array processor. Compared with sample matrix inversion (SMI) methods, it is shown to significantly reduce the deleterious effects of impulsive noise spikes (outliers) on convergence performance of metrics; such as (normalized) output residue power and signal to interference-plus-noise ratio (SINR). For the case of no outliers, the MCC convergence performance remains commensurate with SMI methods for several practical interference scenarios. It is shown that the MCC offers natural protection against desired signal (target) cancellation when weight training data contains strong target components. In addition, results are shown for a high-fidelity, simulated, barrage jamming and nonhomogenous clutter environment. Here the MCC is used in a space-time adaptive processing (STAP) configuration for airborne radar interference mitigation. Results indicate the MCC produces a marked SINR performance improvement over SMI methods.  相似文献   

10.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

11.
Space-time adaptive processing (STAP) holds tremendous potential for the new generation airborne surveillance radar, in which the phased array antennas and pulse Doppler processing mode are adopted. A new STAP approach using the multiple-beam and multiple Doppler channels is presented here for airborne phased array radar. The approach with space-time multiple-beam (STMB) architecture is robust to array errors and has very low system degrees of freedom (DOFs). Hence, it has low sample support requirement and it is very suitable for the practical planar phased array radar under nonhomogeneous clutter environments. Meanwhile, a new nonhomogeneous detector (NHD) based on the correlation dimension (CD) is also proposed here, which is used as an effective method to screen tracing data prior to detection processing. It can further improve the performance of the STAP approach in the severely nonhomogeneous clutter environments. Therefore, a scheme that incorporates the correlation dimension nonhomogeneity detector (CD-NHD) with the STMB is recommended, which we term CD-NHD-STMB. The experimental simulation results indicate that: 1) the STMB processor is robust to array element error and has high performance under nonhomogeneous clutter environments; 2) the CD-NHD is also effective on the nonhomogeneous clutter. As a result, the CD-NHD-STMB scheme is robust to array element error and nonhomogeneous clutter, and therefore available for airborne phased array radar applications.  相似文献   

12.
基于杂波子空间估计的MIMO雷达降维STAP研究   总被引:1,自引:0,他引:1  
翟伟伟  张弓  刘文波 《航空学报》2010,31(9):1824-1831
 多输入多输出(MIMO)雷达是近年来出现的一种新体制雷达,针对MIMO体制的机载雷达开展空时自适应处理(STAP)技术研究是值得进一步努力的方向。本文研究了机载MIMO雷达STAP技术的降维算法,通过对STAP技术杂波抑制原理进行分析,推导并得到一种基于杂波子空间的降维算法。结合扁长椭球波函数(PSWF)的特点,提出了一种基于杂波子空间估计的降维算法,并与若干降维算法的杂波抑制性能进行比较。结果表明,当存在阵元幅相误差时,该算法在保持杂波抑制性能的同时能够有效地降低STAP算法的运算量。  相似文献   

13.
Real-time signal processing for a 16-channel phased array radar, including space-time adaptive processing (STAP) algorithms, has been implemented using a 29-node ruggedized version of an Intel Paragon. Techniques employed to efficiently implement each step of the signal processing are discussed. An overall throughput of 3.15 GFLOPS and processing efficiency of 48% has been achieved, indicating that embedded high performance computers can deliver a significant percentage of their advertised peak throughput under real system constraints  相似文献   

14.
李京生  孙进平  毛士艺 《航空学报》2009,30(7):1292-1297
机载多通道阵列雷达天线在工程实践中不可避免地存在各类阵元误差,所产生的通道失配问题会对空时二维自适应处理的性能造成大的影响。对存在阵元误差时的阵列信号模型进行了分析,提出了一种基于协方差矩阵加权(CMT)的阵元误差补偿空时自适应处理(STAP)方法,在工程应用中该加权矩阵可通过地面天线定标及校飞过程确定,通过对总干扰协方差矩阵估计的加权预处理,可将实际阵元误差对STAP性能的影响控制在测量误差的影响范围,最后通过仿真验证了算法的有效性。  相似文献   

15.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

16.
A new concept of spaceborne synthetic aperture radar (SAR) implementation has recently been proposed - the constellation of small spaceborne SAR systems. In this implementation, several formation-flying small satellites cooperate to perform multiple space missions. We investigate the possibility to produce high-resolution wide-area SAR images and fine ground moving-target indicator (GMTI) performance with constellation of small spaceborne SAR systems. In particular, we focus on the problems introduced by this particular SAR system, such as Doppler ambiguities, high sparseness of the satellite array, and array element errors. A space-time adaptive processing (STAP) approach combined with conventional SAR imaging algorithms is proposed which can solve these problems to some extent. The main idea of the approach is to use a STAP-based method to properly overcome the aliasing effect caused by the lower pulse-repetition frequency (PRF) and thereby retrieve the unambiguous azimuth wide (full) spectrum signals from the received echoes. Following this operation, conventional SAR data processing tools can be applied to focus the SAR images fully. The proposed approach can simultaneously achieve both high-resolution SAR mapping of wide ground scenes and GMTI with high efficiency. To obtain array element errors, an array auto-calibration technique is proposed to estimate them based on the angular and Doppler ambiguity analysis of the clutter echo. The optimizing of satellite formations is also analyzed, and a platform velocity/PRF criterion for array configurations is presented. An approach is given to make it possible that almost any given sparse array configuration can satisfy the criterion by slightly adjusting the PRF. Simulated results are presented to verify the effectiveness of the proposed approaches.  相似文献   

17.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

18.
NEW METHOD FOR REDUCED RANK STAP—NON CLUTTER CHANNEL METHOD   总被引:1,自引:0,他引:1  
Space- time adaptive processing(STAP) is aleading technology candidate for improving detec-tion performance of advanced airborne early warn-ing radar.In practical radar systems,the optimumfully adaptive space- time processing[1] cannot al-ways be implemented because of the computationalcomplexity,so the design of suboptimum proces-sors has been one of the key topics in STAP.Sev-eral reduced- rank STAP methods have been pro-posed in recent years.For example,based on thegeneralized sidelobe…  相似文献   

19.
为了将空时自适应处理(STAP)理论更好地应用于水下环境,提高运动声呐对混响的抑制性能,研究了多普勒对运动声呐STAP的影响。具体分析了由多普勒造成的回波脉宽伸缩变换以及目标空时导向向量失配带来的影响。分析结果表明,回波包络脉宽变化对于匹配滤波输出信噪比影响较小,而对空时导向向量修正可以有效提高目标方位估计精度以及混响抑制能力。  相似文献   

20.
Circular array STAP   总被引:5,自引:0,他引:5  
Traditionally, space-time adaptive processing (STAP) for airborne early warning (AEW) radar has been applied to uniform linear arrays (ULAs). However, when considering the overall radar system, electronically scanned circular arrays have advantages: a better combination of even and continual angular and temporal coverage, and mechanical simplicity because it does not need to rotate. This paper answers the question “How well does STAP perform when applied to a circular array?” This paper shows that for the AEW mission, circular arrays are indeed STAP compatible. However, when conventional STAP algorithms are used there may be a small loss in performance when compared with a ULA. With some care in the choice and implementation of the STAP algorithm, the majority of the degradation is at close ranges, where the target returns are relatively strong. At long ranges performance is barely affected. A STAP algorithm which compensates for the circular array environment and provides better performance than existing algorithms is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号