首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
High accuracy differenced phase delay can be obtained by observing multiple point frequencies of two spacecraft using the same beam Very Long Baseline Interferometry (VLBI) technology. Its contribution in lunar spacecraft precision orbit determination has been performed during the Japanese lunar exploration mission SELENE. In consideration that there will be an orbiter and a return capsule flying around the moon during the Chinese lunar exploration future mission Chang’E-3, the contributions of the same beam VLBI in spacecraft precision orbit determination and lunar gravity field solution have been investigated. Our results show that the accuracy of precision orbit determination can be improved more than one order of magnitude after including the same beam VLBI measurements. There are significant improvements in accuracy of low and medium degree coefficients of lunar gravity field model obtained from combination of two way range and Doppler and the same beam VLBI measurements than the one that only uses two way range and Doppler data, and the accuracy of precision orbit determination can reach meter level.  相似文献   

2.
Imaging interplanetary CMEs at radio frequency from solar polar orbit   总被引:1,自引:0,他引:1  
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun–Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.  相似文献   

3.
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10?cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1?s integration time of the correlator output is on the level of 0.1?ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.  相似文献   

4.
深空测控网干涉测量系统在“鹊桥”任务中的应用分析   总被引:1,自引:1,他引:0  
在"嫦娥4号"任务的第一阶段—"鹊桥"阶段,北京航天飞行控制中心利用佳木斯及喀什深空站对"鹊桥"进行了干涉测量观测,获取了实时与事后的高精度测角观测量,有效支持了任务的实施。两深空站需同时完成测控任务,无法交替射电源观测来进行系统差标校,基于此系统采用了长时间隔、在航天器观测前及双站结束后观测射电源的标校方法,在地月转移段、月球至L2转移段、Halo轨道形成段开展了多次干涉测量观测,所获得的时延、时延率结果直接应用于事后联合轨道确定,结果表明:深空网的时延观测精度约为3 ns。  相似文献   

5.
Space Very Long Baseline Interferometry (S-VLBI) is an aperture synthesis technique utilizing an array of radio telescopes including ground telescopes and space orbiting telescopes. It can achieve much higher spatial resolution than that from the ground-only VLBI. In this paper, a new concept of twin spacecraft S-VLBI has been proposed, which utilizes the space-space baselines formed by two satellites to obtain larger and uniform uv coverage without atmospheric influence and hence achieve high quality images with higher angular resolution. The orbit selections of the two satellites are investigated. The imaging performance and actual launch conditions are all taken into account in orbit designing of the twin spacecraft S-VLBI. Three schemes of orbit design using traditional elliptical orbits and circular orbits are presented. These design results can be used for different scientific goals. Furthermore, these designing ideas can provide useful references for the future Chinese millimeter-wave S-VLBI mission.   相似文献   

6.
A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes. (i) Space-ground VLBI. The maximum space-ground baseline length is about 100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves). (ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level. (iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.   相似文献   

7.
位于地月平动点的探测器因为较差的观测几何,需要地基USB/UXB与天文VLBI长时间的联合跟踪数据获取稳定精确的轨道。提出了利用中国深空网双站共视跟踪平动点探测器,获取双程、三程测距及VLBI测量数据,解算探测器精确轨道的模式。以"鹊桥"卫星为分析对象,首先评估中国深空网对"鹊桥"的跟踪能力。然后分析不同观测组合模式下的定轨计算精度。结果表明:双站共视约束下,深空站每天对"鹊桥"跟踪弧长大于5 h;使用长于6 h的双站跟踪数据进行定轨,系统差的解算更有利于轨道精度提升;跟踪时长超过2天时,必须在轨道解算的同时估计光压系数,并有望实现优于百米的轨道精度。  相似文献   

8.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   

9.
Since 1960s, the gravitational potential of the Moon has been extensively studied from Doppler tracking data between a ground station and spacecraft orbiting in front of the Moon (e. g., Lorell and Sjogren, 1968; Bills and Ferrari, 1980; Konopliv et al., 1993; Lemoine et al., 1997). Because direct radio communication is interrupted while spacecraft is orbiting behind the Moon, however, the coverage of tracking data has been limited mostly to the nearside of the Moon so far. In order to compensate for such lack of tracking data, we propose satellite-to-satellite Doppler measurement by using a relay subsatellite in Japanese mission to the Moon in 2003. A complete coverage of Doppler tracking from an orbiter at sufficiently low altitude will significantly improve lunar gravity model and will contribute for future geophysical study of interior and tectonics on the Moon. Further, we propose differential VLBI experiment between the subsatellite and a propulsion module landed on the surface of the Moon. The differential VLBI is about 10 times more accurate than conventional Doppler measurement for long-wavelength gravity field. Besides, differential VLBI is sensitive to the displacement perpendicular to the line of sight. Thus the VLBI experiment provides precise estimates of the lunar gravity potential at low degree. The last proposal for selenodetic experiments is a laser altimeter. Global topography model has been already developed from the analysis of Clementine LIDAR data (Zuber et al., 1994), but it is suggested that the model includes appreciable anisotropy between NS and E-W directions due to highly eccentric orbit of Clementine spacecraft (Bills and Lemoine, 1995). The laser altimeter experiment from an orbiter in nearly circular orbit will provide a new reference for the isotropic lunar topography model.  相似文献   

10.
基于线性协方差方法的交会对接误差分析   总被引:1,自引:0,他引:1  
将线性协方差分析方法和蒙特卡罗仿真相结合,按交会任务和飞行特征把交会过程分为变轨飞行、自由飞行和中途速度修正三种特征段,研究了状态误差的传播规律和交会过程中各种误差对交会对接精度的影响。在变轨飞行段,分析了追踪航天器的姿态误差、控制系统性能状态估计误差,以及目标航天器轨道摄动对状态误差传播的影响。在自由飞行段,分析了追踪航天器估计状态误差的先验值和测轨误差对状态误差传播的影响。在中途速度修正段,分析了追踪航天器姿态误差和控制系统性能误差对状态误差传播的影响。仿真结果表明,误差分析方法设计合理,可以指导交会对接的轨道设计工作,能对已经设计好的交会策略进行误差分析和设计验证。  相似文献   

11.
The present status of the ESA cornerstone mission FIRST is presented. A recent industrial study has generated a spacecraft concept employing a 4.5 m passively cooled telescope with focal plane instrument cooling provided by a superfluid helium cryostat. The model payload complement includes two direct detection instruments as well as two heterodyne instruments. After a shared launch by Ariane 5 into GTO, FIRST propels itself into the 24-hour highly eccentric operational orbit, where observations can be conducted up to 17 hours per day with an expected approximate mission duration of 3 years. An additional complementary study of a non-cryostat spacecraft option will also be performed.  相似文献   

12.
我国将于2020年首次发射由环绕器和着陆巡视器组成的火星探测器,火星探测器的跟踪及精密测定轨是完成工程任务和科学探测的基础。火星探测器的跟踪和测定轨,目前主要采用基于地面无线电测量的测距、测速和甚长基线干涉VLBI测角3种手段。主要针对VLBI技术予以介绍,主要内容为:△DOR型VLBI技术在国内外的应用情况、火星探测器VLBI测定轨技术分析、基于同波束VLBI的火星车定位技术、火星探测器VLBI观测等。这些内容对我国的火星探测器测定轨有重要的应用价值。  相似文献   

13.
Space telescope ultrahigh precision pointing control requires the spacecraft platform to provide an ultra-quiet working environment. Vibration isolator rejection control and the multi-stage integrated control method is believed to be one of the best methods to improve the space telescope attitude control performance. In this paper, the fine dynamics model of multi-stage spacecraft systems is presented and the multi-stage integrated controller design techniques are provided. Effectiveness of the multi-stage integrated control approach is demonstrated by both the numerical simulation and experiment results. An integrated design and demonstrated experimental environment is developed for high-fidelity control performance assessment. The verification experiments for the space telescope attitude control and vibration control are carried out. The results show that the pointing accuracy and stability of the line-of-sight (LOS) for space telescope are improved at least one order by the multi-stage integrated control method.  相似文献   

14.
针对长周期高精度轨道控制任务的快速仿真试验需要,对传统的卫星控制系统半实物仿真系统进行了重构.提出利用动力学仿真模型程序的超实时运行驱动试验进程加速的方法,介绍系统总体设计思路及其结构、组成和工作原理,给出实时/超实时双模高精度动力学模型的开发及星地状态同步两项关键技术的具体实现,并通过应用实例证明了系统的有效性.  相似文献   

15.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   

16.
轨道器精密定轨与着陆器的精确定位在深空探测任务中具有非常重要的科学意义。对一种月球与火星探测多程微波测量链路的定轨定位能力进行了初步仿真分析,推导了这种多程微波测量链路的测量模型,分析了该模型的优势。模拟仿真分析结果表明,此测量跟踪模式的数据具有提升轨道精度的潜在能力,并且同时求得着陆器的位置。定量分析表明,在考虑坐标系转换误差,重力场误差,行星历表误差以及星上转发误差的情况下,模拟1 mm/s的噪声,对于月球探测器来说,轨道器的定轨精度可达几米,着陆器的定位精度有望达到分米量级;对于火星探测器来说,轨道器的定轨精度可达到数10 m,着陆器的定位精度可达到几米。  相似文献   

17.
"嫦娥一号"卫星轨控标定方法研究与实现   总被引:2,自引:0,他引:2  
在航天测控任务中,对轨控效果进行标定并合理利用可以实现更为精准的轨道控制.提出了一种综合利用控前控后精密轨道、轨控过程遥测姿态数据、遥测加速度计测量数据对沉底发动机、轨控发动机、加速度计刻度系数进行标定的方法;介绍了该方法在中国首次月球探测任务中的应用情况;最后分析了标定结果对定轨及定姿精度的敏感程度,从而在理论上进一步说明在后续深空探测中利用精密轨道进行轨控标定的可行性和重要性.  相似文献   

18.
嫦娥二号于2012-04-15开展对图塔蒂斯小行星的探测试验,至2012-12-13与图塔蒂斯交会,共飞行243 d,这是我国对小行星的首次探测.因为未安装星载导航设备,CE-2 在小行星探测试验的全过程均基于地基USB(Unified S-Band)与甚长基线干涉测量技术(VLBI,Very Long Baseline Interferometry)测量实现导航.对小行星探测期间的定轨计算及精度分析进行了讨论,对我国新建深空站的测量数据进行了分析.针对交会前最后一次轨道机动后,仅有13 d控后数据的现状,提出了快速轨道重建策略.计算结果表明该策略不仅可以有效改进定轨计算精度,还可以实现轨控速度增量的标定.基于重叠弧段的轨道分析比较表明,单独使用USB长弧数据计算可以获得10 km的定轨精度,综合USB与VLBI数据联合定轨,定轨精度可以提高1倍.  相似文献   

19.
Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.  相似文献   

20.
In this paper, questions on development, implementation, and operation of RadioAstron project Data Processing Center (DPC) are reviewed. The main components of the dedicated DPC are the computer complex with 1 TFlops/s performance, storage with memory capacity of approximately 10 PB, the network infrastructure, and the corresponding communication channels. Performance enhancement methods and resolution of information storage, archiving, and process problems of space VLBI high-speed digital data flows are analyzed. It is shown that successful operation of DPC is mainly provided by optimal organization of computer system structure, storage, and networking transmission. Some of the important key features of RadioAstron project DPC and its comparative differences from the standard VLBI procedures are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号