首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在太阳活动高低年的地磁平静/扰动环境下,利用不同热层大气模式J77,DTM78,MSIS00,JB2008和CHAMP加速度计反演密度,分析有无先验信息条件下的轨道预报误差.结果表明无先验信息的精密轨道预报中,热层模式的性能可能被弹道系数等参数偏差干扰,此时预报误差不能作为模式性能的评价标准.先验信息对轨道预报精度提升非常明显,尤其是地磁扰动期先进热层模式性能得以展现,轨道预报误差为无先验信息情况下的10%~25%.目前热层模式的主要缺陷存在于地磁扰动期.各模式之间的差异是:JB2008模式可以通过线性和单一频率周期项补偿,而J77及DTM78等模式还存在更多频率的误差.本文对不同情况下精密轨道预报的研究结果可为空间碎片碰撞预警等工程实践提供参考.  相似文献   

2.
Atmospheric densities from ESA’s GOCE satellite at a mean altitude of 270 km are validated by comparison with predictions from the near real time model HASDM along the GOCE orbit in the time frame 1 November 2009 through 31 May 2012. Except for a scale factor of 1.29, which is due to different aerodynamic models being used in HASDM and GOCE, the agreement is at the 3% (standard deviation) level when comparing daily averages. The models NRLMSISE-00, JB2008 and DTM2012 are compared with the GOCE data. They match at the 10% level, but significant latitude-dependent errors as well as errors with semiannual periodicity are detected. Using the 0.1 Hz sampled data leads to much larger differences locally, and this dataset can be used presently to analyze variations down to scales as small as 150 km.  相似文献   

3.
地震活动一直是人类非常关注的自然灾害事件, 其对热层大气密度的影响还不是非常清楚. 2008年5月12日中国四川汶川发生震级8.0级强震事件, 随后, 在6月14日日本本州东部, 7月5日鄂霍次克海和7月19日日本本州东海岸发生震级7.0~7.6级强震事件, 利用期间中国星载大气密度探测器在630 km高度上就位探测的热层大气密度对探测结果进行综合分析, 结果表明, 强地震震源中心区域上空附近热层大气密度出现异常降变. 在时间上, 强地震发生前1~3天内就已开始出现大气密度降变, 强地震发生日附近降变达到谷值, 降变比达0.40~0.65. 这种降变的纬度区域范围震前位于强震中心所处纬度的±3º~±9º, 强震发生当日扩大到±8º~±20º.  相似文献   

4.
一种基于温度参数的热层密度修正方法   总被引:2,自引:1,他引:1       下载免费PDF全文
热层大气的阻力效应是影响低轨航天器大量空间操作的重要因素, 尤其是经验密度模式, 其固有的至少15%的内符合误差已严重制约航天器轨道计算精度的提高. 针对广泛应用的经验密度模式, 选择物理背景简明、关联参数较少的JACCHIA71模式, 以地磁平静条件下的全球散逸层顶温度最小值Tc及125 km高度拐点温度Tx为对象, 建立密度相对于上述温度参数的条件方程, 推导密度相对于温度参数的解析偏导数, 并给出其最小二乘解. 同时, 利用CHAMP卫星数据对模式进行修正, 模式平均误差从40%降低至3%左右. 通过TG01飞行器的轨道预报比较, 修正前后轨道预报位置精度从2 km提升至1 km左右. 经过CHAMP卫星和TG01飞行器的实测数据检验, 验证了修正算法的正确性和有效性.  相似文献   

5.
Based on the measurements made by Atmospheric Density Detectors (ADDs) onboard Chinese spacecraft Shenzhou 2-4, the variations of thermosphere density are revealed. During the quiet period, the density at spacecraft altitude of 330~410km exhibited a dominant diurnal variation, with high value on dayside and low value on nightside. The ratio of the diurnal maximum density to the minimum ranged from 1.7 to 2.0. The ratio shows a positive correlation with the level of solar activity and a negative correlation with the level of geomagnetic activity. When a geomagnetic disturbance comes, the atmospheric density at the altitude of 330~410km displayed a global enhancement. For a strong geomagnetic disturbance, the atmospheric density increased by about 56%, and reached its maximum about 6~7 hours after the geomagnetic disturbance peak. The density asymmetry was also observed both in the southern and northern hemisphere during the geomagnetic disturbance peak.  相似文献   

6.
A mission for in situ thermosphere density and winds measurement is described, based on nanospacecraft equipped with a drag balance instrument (DBI) and a GPS receiver. The mission is based on nanosatellite clusters deployed in three orbital planes. In this study, clusters of 10 nanospacecraft are considered, leading to a mission based on a total of 30 nanospacecraft. The geometry analyzed is a symmetrical one, including an equatorial orbit and two orbits with the same inclination and opposing ascending nodes. The main idea is that, by combining the accurate information on the satellite inertial position and velocity provided by the GPS receiver and the drag acceleration intensity provided by the DBI, due to the orbits’ geometrical configuration, both atmospheric drag and wind can be resolved in a region close to the orbit nodes. Exploiting the Earth oblateness effect, a complete scan of the equatorial regions can be accomplished in the short mission lifetime typical of very low Earth orbit satellites, even in high solar activity peaks, when the expected nanospacecraft lifetime is about 40 days.  相似文献   

7.
Global positioning system (GPS) observations can be used to estimate the geocenter motion, but are subjected to large uncertainties and effects due to uneven distribution of GPS stations and high-degree aliasing errors. In this paper, uncertainties and effects on geocenter motion estimates from global GPS observations are investigated and assessed with different truncated degrees and selected GPS network distributions based on different plate motion models, including NUVEL-1A, MORVEL56 and ITRF08. Results show that the selected GPS stations have no big effects on geocenter motion estimates based on different plate motion models, while large uncertainties are found at annual and semi-annual components when using different truncated degrees. Correlations of geocenter motion estimates from selected GPS networks with GRACE and SLR are better with truncated degree 3, and higher truncated degrees will degrade geocenter estimates. Smaller RMS also shows better results with the truncated degree 3 and the NUVEL1A has the worse results because more GPS sites are eliminated. For annual signal with truncated degree 3, four GPS strategies can reduce annual amplitudes by about 29.2% in X, 5.6% in Y, and 27.9% in Z with respect to truncated degree 1. Annual phases of all GPS solutions from MORVEL56 and ITRF08 are almost close to the GRACE solution with truncated degrees from 3 to 10, while the semi-annual signals are relatively weaker for all cases.  相似文献   

8.
利用全球定位系统(Global Positioning System,GPS)的双频观测数据反演得到电离层的总电子含量(Total Electron Content,TEC),使得广域甚至全球范围高时空分辨率的电离层观测研究成为可能,但由于GPS卫星和接收机对信号的硬件延迟可导致TEC测量系统偏差,因此,需要探索反演TEC并估测GPS卫星与接收机硬件延迟的有效算法.本文根据电离层电波传播理论,阐述了基于双频GPS观测提取电离层TEC的方法,给出TEC与硬件延迟的基本关系.综合研究了TEC与硬件延迟的反演方法,进行分析与归纳分类,在此基础上提出了有待深入研究的问题.  相似文献   

9.
Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System (GPS) techniques are similarly affected by propagation delays in the neutral atmosphere (troposphere) and hence make use of similar data processing strategies for reducing this effect. We compare Zenith Tropospheric Delays (ZTDs) estimated from 52 DORIS and GPS station pairs co-located at 35 sites over the 2005–2008 period. We find an overall systematic negative mean bias of −4 mm and a median bias of −2 mm, with a large site-to-site scatter and especially stronger biases over South America, potentially linked to remaining problems related to the South Atlantic Anomaly (SAA) in the current DORIS data processing. The standard deviation of ZTD differences is in the range 4–12 mm over the globe (8 mm on average), with larger values located in the southern hemisphere. The spatial variability of differences is consistent with previous work but remains largely unexplained. DORIS is shown to be much less sensitive to instrumental changes than GPS (only the switch from Alcatel to Starec antenna at Toulouse is detected as an offset of −4 mm in the ZTD time series). On the opposite, discontinuities and spurious annual signals are found in the GPS ZTD solutions. A discontinuity of +5 mm is found on 5 November 2006, linked to the switch from relative to absolute GPS antenna models used in the data processing. The use of modified GPS antennas (e.g. at GODE) or improved antenna models is shown to reduce the spurious annual signal (e.g. from 5 mm to 2 mm at METS). Overall, the agreement between both techniques is good, though DORIS shows a significantly larger random scatter. The high stability and good spatial and temporal coverage make DORIS a potential candidate technique for meteorology and climate studies as long as reasonable time averaging can be applied (e.g. differences are reduced from 8.6 to 2.4 mm with 5-day averages) and no real-time application is considered. This technique could be considered as a potential contributor to Global Geodetic Observing System (GGOS) for climatology.  相似文献   

10.
Densities derived from accelerometer measurements on the CHAMP satellite near 400 km are used to statistically establish characteristics of large-scale (>1000 km) traveling atmospheric disturbances (TADs). Only TADs that at least propagate from the auroral zone to the equator are analyzed here, and a total of 21 identifiable events are found over the years 2001–2007. The average speed of all TADs, regardless of local time, is 646 ± 122 ms−1. The average speeds on the dayside and nightside are 595 ± 127 ms−1 and 685 ± 106 ms−1, respectively, i.e., the speed appears to be 10% higher on average on the nightside. On six occasions TADs were only detected on the night side; however, TADs on the dayside often appear more distinctly in the data. Moreover, contrary to some theoretical expectations, dayside TADs do not dissipate more readily than night side TADs, although much less are detected between 8–20 solar local time. No clear dependence of TAD amplitude or phase speed with respect to Kp, or rate of increase of Kp, is found.  相似文献   

11.
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector.  相似文献   

12.
Because of global warming, global sea levels have risen, the frequency of drought in Taiwan is much more frequent in winter and spring, and rainfall tends to concentrate in summer. The probability of disaster-type weather has also increased significantly. Estimating precipitable water vapor (PWV) through GPS signals, related studies and analyses of weather conditions, and the effective use of meteorological forecasts have been valued by many meteorological research organizations and officials. In this study, PWV data from 2006 to 2017 and rainfall data were used for long-term harmonic analysis. PWV data calculated by ECMWF (ECMWF-PWV) and PWV data calculated by GPS (GPS-PWV) were subjected to regression analysis to verify the reliability of the GPS-PWV data. The research results show that GPS-PWV and ECMWF-PWV have extremely high correlations; however, the climatic characteristics of some regions and the high spatial resolution of GPS-PWV are able to accurately calculate the high topographic relief of small areas. It is judged that the GPS-PWV is more accurate than the ECMWF-PWV. It is worth noting that the PWV trend of the regions during the 6-year-before period has not changed very much, but the rainfall trend has changed obviously. Except for the eastern region, most of the regions show a decreasing trend year by year. More long-term observations are still needed to prove whether this phenomenon relates to global warming. Long-term rainfall analysis showed that the topography blocked water vapor to the western, southern, and mountainous regions, making them distinctly wet or dry. The harmonic curve showed great consistency with the peaks of PWV and rainfall. However, in the northern and eastern parts of the windward side, the time when maximum rainfall occurred each year may be one month later than the time when the maximum PWV value occurred each year. The reason for this difference is likely to be a decrease in the number of autumn typhoons, resulting in a nearly one-month difference in PWV peaks and rainfall peaks. Finally, we analyzed the linear trend of GPS-PWV and temperature for all regions in Taiwan, and found that annual increasing rate of GPS-PWV and temperature of all regions are within 0.4–0.5 mm/year and 0.04–0.11 C°/year, respectively.  相似文献   

13.
High-rate GPS positioning has been recognized as a powerful tool in estimating epoch-wise station displacement which is particularly useful for seismology. In this study, station displacements during the 12 May 2008 Mw 8.0 Wenchuan earthquake are derived from the 1-Hz GPS data collected at a set of stations in China. The impacts of integer ambiguity resolution and station environment-dependent effects are investigated in order to yield more accurate results. The position accuracy of horizontal components of better than 1 cm suggests that GPS can sense the rapid position oscillation of about 2 cm in amplitude. Temporal and spatial analysis is applied to the surface displacement at station XANY and the characteristics of the movements due to Rayleigh and Love waves are detected and discussed. The comparison of GPS-derived displacement with relevant synthetic data computed based on a recently published rapture model shows a reasonable agreement in waveform. The various differences in amplitude need further investigation and also imply that rapture inversion might be improved if GPS-derived displacement is assimilated.  相似文献   

14.
Electron density measurements obtained from China Seismo‐Electromagnetic Satellite (CSES) and Swarm-B can play an increasingly important role in the study of ionosphere above F2 peak height. This study presented a comprehensive comparison of electron density products obtained from Langmuir probe mounted on CSES and Swarm-B with ionospheric tomography for a whole year period of 2019. CSES was fully compared with Swarm-B on a global scale, including both absolute and relative differences, and a new index called NFI was developed to better quantify the similarity between two latitudinal profiles of electron density. CSES and Swarm-B were then compared with tomography respectively in four regions, roughly located in America, Europe, Australia and China. Results indicated that CSES data are consistent with Swarm-B, as NFI values exceed 0.6 for most of the analyses. Tomography and Swarm-B were found to have a good agreement as their biases are less than 0.2 × 105 el/cm3 in general. For the comparison between CSES and tomography, the bias increased to around 0.6 × 105 el/cm3 but the standard deviation changed slightly, validating the underestimation of electron density by CSES. The spatiotemporal comparisons of CSES and Swarm-B with tomography showed that: 1) the differences in electron density were relatively low in middle latitudes and increased rapidly in the regions of equatorial ionization anomaly; 2) Swarm-B has a better consistent with tomography than CSES, but both are capable of detecting ionosphere anomalies such as midlatitude arcs; and 3) CSES and Swarm-B both can capture the seasonal changes of electron density, while their values are basically smaller than those from tomography in Spring and Summer months.  相似文献   

15.
Differential Code Bias (DCB) is an essential correction that must be provided to the Global Navigation Satellite System (GNSS) users for precise position determination. With the continuous deployment of Low Earth Orbit (LEO) satellites, DCB estimation using observations from GNSS receivers onboard the LEO satellites is drawing increasing interests in order to meet the growing demands on high-quality DCB products from LEO-based applications, such as LEO-based GNSS signal augmentation and space weather research. Previous studies on LEO-based DCB estimation are usually using the geometry-free combination of GNSS observations, and it may suffer from significant leveling errors due to non-zero mean of multipath errors and short-term variations of receiver code and phase biases. In this study, we utilize the uncombined Precise Point Positioning (PPP) model for LEO DCB estimation. The models for uncombined PPP-based LEO DCB estimation are presented and GPS observations acquired from receivers onboard three identical Swarm satellites from February 1 to 28, 2019 are used for the validation. The results show that the average Root Mean Square errors (RMS) of the GPS satellite DCBs estimated with onboard data from each of the three Swarm satellites using the uncombined PPP model are less than 0.18 ns when compared to the GPS satellite DCBs obtained from IGS final daily Global Ionospheric Map (GIM) products. Meanwhile, the corresponding average RMS of GPS satellite DCBs estimated with the conventional geometry-free model are 0.290, 0.210, 0.281 ns, respectively, which are significantly larger than those obtained with the uncombined PPP model. It is also noted that the estimated GPS satellite DCBs by Swarm A and C satellites are highly correlated, likely attributed to their similar orbit type and space environment. On the other hand, the Swarm receiver DCBs estimated with uncombined PPP model, with Standard Deviation (STD) of 0.065, 0.037 and 0.071 ns, are more stable than those obtained from the official Swarm Level 2 products with corresponding STD values of 0.115, 0.101, and 0.109 ns, respectively. The above indicates that high-quality DCB products can be estimated based on uncombined PPP with LEO onboard observations.  相似文献   

16.
Total electron content (TEC) measured simultaneously using Global Positioning System (GPS) ionospheric monitors installed at some locations in Nigeria during the year 2011 (Rz = 55.7) was used to study the diurnal, seasonal, and annual TEC variations. The TEC exhibits daytime maximum, seasonal variation and semiannual variations. Measured TEC were compared with those predicted by the improved versions of the International Reference Ionosphere (IRI) and NeQuick models. The models followed the diurnal and seasonal variation patterns of the observed values of TEC. However, IRI model produced better estimates of TEC than NeQuick at all locations.  相似文献   

17.
As an important error source in Global Navigation Satellite System (GNSS) positioning and ionospheric modeling, the differential code biases (DCB) need to be estimated accurately, e.g., the regional Quasi-Zenith satellite system (QZSS). In this paper, the DCB of QZSS is estimated by adopting the global ionospheric modeling method based on QZSS/GPS combined observations from Multi-GNSS experiment (MGEX). The performance of QZSS satellite and receiver DCB is analyzed with observations from day of year (DOY) 275–364, 2018. Good agreement between our estimated QZSS satellite DCB and the products from DLR and CAS is obtained. The bias and root mean square (RMS) of DCB are mostly within ±0.3 ns. The day-to-day fluctuation of the DCB time series is less than 0.5 ns with about 96% of the cases for all satellites. However, the receiver DCB is a little less stable than satellite DCB, and their standard deviations (STDs) are within 1.9 ns. The result shows that the stability of the receiver DCBs is not significantly related to the types of receiver or antenna.  相似文献   

18.
With the advent of the GPS navigation system, a promising ground based technique has been introduced which makes it possible to estimate the amount of water vapor in the troposphere from operational GPS networks at relatively low additional costs. While the estimation of the integrated amount is currently well established, the determination of the spatial water vapor distribution and its temporal variation are still a major challenge. To account for the vertical resolution, several tomographic approaches were pursued. We developed the software package AWATOS (atmospheric water vapor tomography software) which is based on the assimilation of double differenced GPS observations. Applying a least-squares inversion, the inhomogeneous spatial distribution of water vapor is determined. An extensive investigation has been carried out in Switzerland. GPS measurements are performed by the dense permanent Swiss national GPS network AGNES of the Swiss Federal Office of Topography (swisstopo). A total of 40 equally distributed water vapor profiles have been estimated on an hourly basis. For the purpose of validation, 22 radiosonde profiles were used at the GPS and meteorological station Payerne. Furthermore, data of the numerical weather model aLMo (alpine model in Switzerland, MeteoSwiss) were compared with the tomographic results. An overall good agreement of the three methods with an rms of better than 1.6 g/m3 absolute humidity was achieved. The results show that AGNES can be used as a dedicated network for the purpose of GPS-tomography, using a horizontal resolution of approximately 50 km and height layers of 300–500 m thickness in the lower troposphere.  相似文献   

19.
Spaceborne GPS receivers are used for real-time navigation by most low Earth orbit (LEO) satellites. In general, the position and velocity accuracy of GPS navigation solutions without a dynamic filter are 25 m (1σ) and 0.5 m/s (1σ), respectively. However, GPS navigation solutions, which consist of position, velocity, and GPS receiver clock bias, have many abnormal excursions from the normal error range for space operation. These excursions lessen the accuracy of attitude control and onboard time synchronization. In this research, a new onboard orbit determination algorithm designed with the unscented Kalman filter (UKF) was developed to improve the performance. Because the UKF is able to obtain the posterior mean and covariance accurately by using the second-order Taylor series expansion through the sampled sigma points that are propagated by using the true nonlinear system, its performance can be better than that of the extended Kalman filter (EKF), which uses the linearized state transition matrix to predict the covariance. The dynamic models for orbit propagation applied perturbations due to the 40 × 40 geo-potential, the gravity of the Sun and Moon, solar radiation pressure, and atmospheric drag. The 7(8)th-order Runge–Kutta numerical integration was applied for orbit propagation. Two types of observations, navigation solutions and C/A code pseudorange, can be used at the user’s discretion. The performances of the onboard orbit determination were verified using real GPS data of the CHAMP and KOMPSAT-2 satellites. The results of the orbit determination were compared with the precision orbit ephemeris (POE) of the CHAMP and KOMPSAT-2 satellites.  相似文献   

20.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号