首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
在流场背景湍流度比较大或流场中涡结构的尺度范围比较宽的情况下,为了研究湍流场中不同尺度涡结构的迁移速度,用IFA300双通道恒温热线风速计和两个热线探针测量圆自由射流中心线上距离一定的空间两点同一时刻的流向速度分量,用子波分析提取了每一个探针输出的不同尺度的脉动速度信号,计算了两个探针输出的同一尺度脉动速度信号的互相关函数,利用互相关函数达到最大值对应的延迟时间研究了湍流多尺度涡结构的迁移特性。实验结果表明:不同尺度涡结构具有不同的迁移速度,小尺度涡的迁移速度较大,大尺度涡的迁移速度较小。其中,一部分尺度的涡结构是湍流中的主要结构,该尺度涡结构对湍流的贡献也是主要的,其迁移速度与实验测得的湍流平均速度较为接近。  相似文献   

2.
3.
徐力平 《航空学报》1989,10(2):44-51
 对一个分离后的二维超音速剪切流进行动态纹影——光子相关测量,得到了剪切层中大尺度涡的迁移速度以及由大尺度涡流诱导的剪切层自维持振荡频率。同时由光子相关测量可以估算剪切层中紊流动能的分布。发现了高速剪切层中大涡结构的某些特殊性质。结果表明这一测量方法在复杂高速流动的测量中具有潜在的优势。  相似文献   

4.
The interior evolution of Mercury—the innermost planet in the solar system, with its exceptional high density—is poorly known. Our current knowledge of Mercury is based on observations from Mariner 10’s three flybys. That knowledge includes the important discoveries of a weak, active magnetic field and a system of lobate scarps that suggests limited radial contraction of the planet during the last 4 billion years. We review existing models of Mercury’s interior evolution and further present new 2D and 3D convection models that consider both a strongly temperature-dependent viscosity and core cooling. These studies provide a framework for understanding the basic characteristics of the planet’s internal evolution as well as the role of the amount and distribution of radiogenic heat production, mantle viscosity, and sulfur content of the core have had on the history of Mercury’s interior. The existence of a dynamo-generated magnetic field suggests a growing inner core, as model calculations show that a thermally driven dynamo for Mercury is unlikely. Thermal evolution models suggest a range of possible upper limits for the sulfur content in the core. For large sulfur contents the model cores would be entirely fluid. The observation of limited planetary contraction (∼1–2 km)—if confirmed by future missions—may provide a lower limit for the core sulfur content. For smaller sulfur contents, the planetary contraction obtained after the end of the heavy bombardment due to inner core growth is larger than the observed value. Due to the present poor knowledge of various parameters, for example, the mantle rheology, the thermal conductivity of mantle and crust, and the amount and distribution of radiogenic heat production, it is not possible to constrain the core sulfur content nor the present state of the mantle. Therefore, it is difficult to robustly predict whether or not the mantle is conductive or in the convective regime. For instance, in the case of very inefficient planetary cooling—for example, as a consequence of a strong thermal insulation by a low conductivity crust and a stiff Newtonian mantle rheology—the predicted sulfur content can be as low as 1 wt% to match current estimates of planetary contraction, making deep mantle convection likely. Efficient cooling—for example, caused by the growth of a crust strongly in enriched in radiogenic elements—requires more than 6.5 wt% S. These latter models also predict a transition from a convective to a conductive mantle during the planet’s history. Data from future missions to Mercury will aid considerably our understanding of the evolution of its interior.  相似文献   

5.
高速飞行弹丸诱导的三维爆轰波数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
代淑兰  许厚谦 《推进技术》2007,28(2):132-134
采用三维非定常化学反应控制方程组对驻定在带攻角高速飞行弹丸上的斜爆轰波流场进行了数值模拟。对流项和化学反应项采用时间分裂法,分别用TVD格式和基元反应模型进行处理。计算结果表明三维数值模拟可以更准确的描述弹丸飞行攻角对爆轰波的形成及结构的影响,是进一步研究超驱爆轰推进技术的重要手段。  相似文献   

6.
复合热条件下椭球形封闭腔内低压气体的自然对流   总被引:1,自引:0,他引:1  
以填充氦气的平流层浮空器为应用背景,对非均匀复杂热边界条件下大尺寸椭球形封闭腔内低压气体的自然对流热特性与动力学特性进行了数值模拟。以Fluent软件为基础,采用用户自定义函数(UDF)自编程技术引入外部非均匀的对流-辐射耦合热边界条件,考虑了低压气体密度对压力、温度的依赖关系。分析了不同条件下腔壁与内部气体温度、对流换热特性以及流场、压力、质心变化等动力学特性,通过数据分析,获得了腔内自然对流的局部对流换热系数关联式。研究结果表明,在平流层环境下,外部非均匀热边界条件及其变化对封闭腔内低压气体的自然对流热特性与动力学特性影响很大。  相似文献   

7.
谭永华  陈晖  李雨濛 《推进技术》2019,40(6):1314-1323
为了考虑低温介质的热力学效应对空化发展的影响,基于气泡表面对流换热平衡建立了温降与气泡生长的关系,引入夹带理论估计了对流换热系数,并对一种输运型空化模型进行修正,将修正后的空化模型以二次开发的形式嵌入至商业软件中,同时引入能量方程源项以及物性参数随温度变化关系,对二维翼型表面空化流动进行数值仿真,通过与实验结果的对比,发现计算结果与实验结果符合较好,修正后的空化模型能够更好地预测空化区内温度的分布,最大温降偏差由62.18%降低至7.14%,平均温度偏差由0.59%降低至0.28%。考虑热效应之后,空化区主要由气液混合组成,来自主流的液体一部分经对流传递至空化区,一部分在翼型头部和气液界面处发生空化形成蒸汽,导致空化区气相体积分数显著减小,空化区与主流之间的界面变得模糊,最大温降和压降均发生在翼型头部位置。  相似文献   

8.
Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core with known radius and density such as Earth or are widely agreed to have an inner core such as Mercury. The absence of an inner core in Venus, Mars, and the Moon (terrestrial bodies that lack fields) is not as well established although considered likely. The composition of the Martian core may be close to the Fe–FeS eutectic which would prevent an inner core to grow as long as the core has not cooled to temperatures around 1500 Kelvin. Venus may be on the verge of growing an inner core in which case a chemical dynamo may begin to operate in the geologically near future. The remanent magnetization of the Martian and the lunar crust is evidence for a dynamo in Mars’ and possibly the Moon’s early evolution and suggests that powerful thermally driven dynamos are possible. Both the thermally and the chemically driven dynamo require that the core is cooled at a sufficient rate by the mantle. For the thermally driven dynamo, the heat flow from the core into the mantle must by larger than the heat conducted along the core adiabat to allow a convecting core. This threshold is a few mW?m?2 for small planets such as Mercury, Ganymede, and the Moon but can be as large as a few tens mW?m?2 for Earth and Venus. The buoyancy for both dynamos must be sufficiently strong to overcome Ohmic dissipation. On Earth, plate tectonics and mantle convection cool the core efficiently. Stagnant lid convection on Mars and Venus are less efficient to cool the core but it is possible and has been suggested that Mars had plate tectonics in its early evolution and that Venus has experienced episodic resurfacing and mantle turnover. Both may have had profound implications for the evolution of the cores of these planets. It is even possible that inner cores started to grow in Mars and Venus but that the growth was frustrated as the mantles heated following the cessation of plate tectonics and resurfacing. The generation of Ganymede’s magnetic field is widely debated. Models range from magneto-hydrodynamic convection in which case the field will not be self-sustained to chemical and thermally-driven dynamos. The wide range of possible compositions for Ganymede’s core allows models with a completely liquid near eutectic Fe–FeS composition as well as models with Fe inner cores or cores in with iron snowfall.  相似文献   

9.
激波与氦气泡相互作用的实验与数值研究   总被引:1,自引:0,他引:1  
提出了一种在激波管中实现运动激波与球形气一气界面相互作用的研究方案。以肥皂膜作为气体交界面,高压火花为光源,采用阴影法,在马赫数M=1.2的情况下,在矩形激波管中开展了一系列的实验研究,获得了激波作用下球形氦气泡界面发展变化的相关实验结果。还通过求解二维轴对称的Euler方程,结合网格自适应策略,对实验过程进行了数值模拟。通过与实验结果的对比分析,证实了涡量的产生和分布对于界面的变形和发展有着重要意义。  相似文献   

10.
本文作者计算了斜齿轮的载荷分布 ,并进而计算了齿面的三维闪温分布。以降低齿面最高闪温为优化目标 ,提出了用数学规划技术对斜齿轮抗胶合修形进行优化设计的方法 ,考虑了齿轮支承变形对齿面闪温和优化修形的影响 ,该方法能够显著地提高斜齿轮传动的胶合极限载荷  相似文献   

11.
In order to accurately predict the heat and mass transfer behaviors and analyze key factors affecting pressurization process in the hydrogen tank, a comprehensive 2 D axial symmetry Volume-Of-Fluid(VOF) model is established by Computational Fluid Dynamics(CFD) method.The effects of phase change, turbulence and mass diffusion are included in the model and relationships between physical properties and temperature are also comprehensively considered. The phase change model is based on Hertz-Knudsen equation and the mass transfer time relaxation factor is determined by the NASA's experimental data. The mass diffusion model is included in gaseous helium pressurizing. The key factors including the inlet temperature, inlet mass flow rate, injector types and pressurizing gas kinds are quantitatively analyzed. Compared with the experiment, the simulation results show that the deviation of pressurizing gas mass consumption, condensing mass and ullage temperature are 3.0%, 7.5% and 4.0% respectively. The temperature stratification is existed along the axial direction in the surface liquid region and the ullage region, and the bulk liquid is in subcooled state during pressurizing. The location of phase change mainly appears near the vapor–liquid interface, and the mass transfer expressing as condensation or vaporization is mainly determined by the heat convection and molecular concentration near the vapor–liquid interface.The key factors show that increasing the inlet temperature and inlet mass flow rate could shorten the pressurizing time interval and save the pressurizing gas mass. The proportion of the total energy addition of the tank absorbed by the ullage region, the liquid region and the tank wall respectively is greatly influenced by the injector types and more heat transferred into the ullage would result in a faster pressure rising rate. Gaseous hydrogen pressurization has a higher efficiency than gaseous helium pressurization. The simulation results presented in this paper can be used as a reference for design optimization of the pressurization systems of cryogenic liquid launch vehicles so as to save the mass of pressurizing gases and shorten the pressurizing time interval.  相似文献   

12.
湍流的耗散及弥散相互作用理论   总被引:3,自引:0,他引:3  
高歌 《航空学报》1985,6(1):38-48
 湍流具有涡团散裂、耗散和弥散的特性。根据Prigogine倡导的耗散结构理论,推导了表征耗散与弥散相互作用的新的湍流控制方程组。其特点是:用稳定性分析得到湍流动能产生项,再根据广义熵增原理推出并列存在的,分别适用于强弱涡量的二个湍流动量方程。运用该理论已成功地计算了一些典型的湍流问题:湍流边界层中的马蹄涡拟序结构、钝体涡尾区的湍流能量逆转、湍流涡团散裂弛豫及各向异性分布。文中给出了部分算例。  相似文献   

13.
The evolution of an 0.6 m stellar model during core helium burning is presented. Following the off-center ignition of helium in the core flash, the star remains on the red giant branch for > 106 years, undergoing twelve additional flashes. After leaving the giant branch, the star evolves on the horizontal branch for 8.15×107 years before re turning to the giant branch and undergoing strong helium-shell flashes. The implications for horizontal branch and RR Lyrae stars are discussed.  相似文献   

14.
液体火箭发动机燃烧室波动过程数值分析   总被引:4,自引:4,他引:4       下载免费PDF全文
采用计算流体力学的方法,对液体火箭发动机燃烧室内波动过程进行了初步的探讨。采用两步PISO算法,对流项采用二阶迎风格式,时空精度都为二阶。考察了方法的适用性,以及声学谐振器、声腔、隔板等燃烧不稳定抑制装置对燃烧室内波动过程的影响。结果表明,采用CFD方法用于分析波动过程是可行的,谐振器、声腔与隔板对拢动波有明显的阻尼作用。  相似文献   

15.
The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian.  相似文献   

16.
为探究不同气体条件下螺旋波电推进器等离子体源的放电特征,开展了氩气、氦气和氮气放电的光谱诊断实验研究。氩气和氦气为工质气体的放电条件下,部分波长谱线相对强度随功率的增加而增强,且斜率出现两次跳变,考虑是螺旋波放电过程中的模式转换,即容性向感性、感性向波模式的转换。三种工质气体,在较低的压强下,各谱线强度均随压强增大而迅速增强,但氩气放电下压强继续增大达到1.0Pa以后,谱线强度增强趋势变缓甚至达到“饱和”状态,而氦气和氮气放电下压强增大到0.5~0.65Pa,谱线强度出现降低趋势,氦气和氮气放电强度对压强更为敏感。  相似文献   

17.
18.
吴建军  鄢昌渝  刘洪刚  何振 《推进技术》2007,28(5):509-512,521
以Raizer建立的一维激光支持的爆轰波模型为基础,根据激光推进中焦点区内入射激光强度的分布情况,建立了二维激光支持的爆轰波模型。在相同的激光入射功率下,分别采用球面激光支持的爆轰波模型、球冠激光支持的爆轰波模型和二维激光支持的爆轰波模型与流场控制方程组进行耦合求解,探讨了焦点区内激光强度分布不同时的光船推进性能。结果表明,在吸收相同激光能量的条件下,三种模型所得推力曲线和冲量耦合系数在误差范围内均吻合,说明能量在焦点区的分布对光船推进性能的影响不大。  相似文献   

19.
Certain meteoritical inclusions contain evidence for the existence of short-lived radioactivities such as 26Al and 41Ca at the time of their formation 4.566 billion years ago. Because the half-lives of these nuclides are so short, this evidence requires that no more than about a million years elapsed between their nucleosynthesis and their inclusion in cm-sized solids in the solar nebula. This abbreviated time span can be explained if these nuclides were synthesized in a stellar source such as a supernova, and were then transported across the interstellar medium by the resulting shock wave, which then triggered the gravitational collapse of the presolar molecular cloud core. Detailed 2D and 3D numerical hydrodynamical models are reviewed and show that such a scenario is consistent with the time scale constraint, and with the need to both trigger collapse and to inject shock-wave matter into the collapsing protostellar cloud and onto the protoplanetary disk formed by the collapse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
旋转冲压压缩转子二维进气流道数值研究   总被引:4,自引:1,他引:4  
借鉴二维超声速进气道的设计方法,设计了一种旋转冲压压缩转子的二维进气流道,并采用二维雷诺平均N-S方程和Spalart-Allmaras湍流模型对其流场进行了数值仿真,研究了转速、背压对二维进气流道中波系结构、内部流动特性和性能的影响.计算结果表明:所提出的旋转冲压压缩转子二维进气流道设计方法是可行的;二维进气流道中产生的激波系与二维超声速进气道中产生的激波系相类似,所不同的是二维进气流道中产生的激波为弯曲激波,而二维超声速进气道中产生的激波为平直激波;转速和背压对二维进气流道的性能有较大影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号