首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Based on our current knowledge of molecular biology a living entity os a negentropic system, made of specific catalytic and informational macromolecules, which has the ability to reproduce itself, selectively interact with the environment, increase complexity, undergo mutation and evolve by natural selection. At the cellular level the essential molecular attributes of a minimal living system are considered to be the following: (a) Linear informational molecules, protoRNA (protoDNA) at least 10 mononucleotides long, capable to code for at least 2 amino acids; (b) Code-translating molecules, aminoacyl-proto tRNAs at least 5 mononucleotides long; (c) Protoenzymes, oligopeptides of at least 2 amino acids, with measurable catalytic activity for phosphodiester, pyrophosphate and peptide bond formation; (d) Protoribosomes, RNA-peptide complexes which facilitate the interaction of the above three types of molecules, and (e) Protomembranes, liposomes made of amphiphilic lipids and peptides which can provide the semipermeability and the proton gradient necessary for the synthesis of pyrophosphate, ATP and other biochemical compounds. The transition from subcellular Lamarckian evolution to cellular Darwinian evolution required the cooperative interaction, within an internal microenvironment, of the above five types of molecular species.  相似文献   

2.
In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of alpha-amino acids and N-acylamino acids from alpha-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from alpha-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed.  相似文献   

3.
The prebiotic synthesis of organic compounds using a spark discharge on various simulated prebiotic atmospheres at 25 degrees has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and the presence of added NH3, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all give about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For the H2/CO and H2/CO2 ratios less than 1, the yields fall off drastically to as low as 10(-3)%. Glycine is almost the only amino acid produced from CO and CO2 atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these results indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde parallel the amino acid results, with yields of HCN and H2CO as high as 13% based on the carbon. Ammonia is also produced from N2 in experiments with no added NH3 in yields as high as 4.9%. These results show that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges. The amount of ammonia formed by hydrolysis of HCN and various nitriles may have exceeded that formed directly in electric discharges.  相似文献   

4.
Hydrogen cyanide polymers--heterogeneous solids ranging in color from yellow to orange to brown to black--may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orange-brown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to alpha-amino acids. Other polymers and multimers with ladder structures derived from HCN would also be present and might well be the source of the many nitrogen heterocycles, adenine included, detected by thermochemolytic analysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter could therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized from freshly formed HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.  相似文献   

5.
Amino acid condensation catalyzed by inorganic oxides is a widely recognized way for prebiotic peptide formation. Silica and alumina are widely distributed in the Earth-like planets' crust as minerals of different complexity, and thus are attractive model catalysts for the studies of abiotic peptide synthesis. Experiments performed in other laboratories have shown that this process can be efficient at > 80 degrees C, which is not easy to find on the planetary surface in combination with sufficient concentrations of amino acids and necessary catalysts. In the present work we tested catalytic activity of three forms of alumina (which proved to be an efficient catalyst for this process) in the intermolecular condensation of L-alanine. We expanded the temperature interval down to 55 degrees C and used the simplest permanent heating procedure, without employing fluctuating drying/wetting conditions. The most important finding is that even under the lowest temperature considered (i.e. 55 degrees C), short peptide formation can be detected already after 10-30 days of heating. This fact implies that the abiotic peptide formation might occur in a wide variety of planetary environments, without need for high temperatures, given the presence of amino acid building blocks and alumina-containing minerals.  相似文献   

6.
If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here.  相似文献   

7.
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.  相似文献   

8.
Life on Mars? I. The chemical environment.   总被引:1,自引:0,他引:1  
The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extent did such conditions prevail on Mars? Two companion-papers (Life on Mars? I and II) will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.  相似文献   

9.
An over-all organizational framework for the origin of life is outlined and attemps for realization are given. Evolution can be described as a process resulting in an increase of “knowledge” where knowledge is the number of carriers of genetic information discarded, on the average, until the evolutionary state under consideration is reached. A model for the evolution of a translation device, a crucial event in the origin of life, is described in detail. Aggregates of short polynucleotide strands in a hairpin conformation play a major role in this model. Experimental evidence for the selectivity of aggregation supports the idea of aggregates as error filters. Chromatographic separation as selection process during chemical evolution supports the model of the early translation device leading to the origin of the genetic code.  相似文献   

10.
In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.  相似文献   

11.
Organic residues formed in the laboratory from the ultraviolet (UV) photo-irradiation or ion bombardment of astrophysical ice analogs have been extensively studied for the last 15 years with a broad suite of techniques, including infrared (IR) and UV spectroscopies, as well as mass spectrometry. Analyses of these materials show that they consist of complex mixtures of organic compounds stable at room temperature, mostly soluble, that have not been fully characterized. However, the hydrolysis products of these residues have been partly identified using chromatography techniques, which indicate that they contain molecular precursors of prebiotic interest such as amino acids, nitrile-bearing compounds, and amphiphilic compounds. In this study, we present the first X-ray absorption near-edge structure (XANES) spectroscopy measurements of three organic residues made from the UV irradiation of ices having different starting compositions. XANES spectra confirm the presence of different chemical functions in these residues, and indicate that they are rich in nitrogen- and oxygen-bearing species. These data can be compared with XANES measurements of extraterrestrial materials. Finally, this study also shows how soft X rays can alter the chemical composition of samples.  相似文献   

12.
A study of the association of homocodonic amino acids and selected heterocodonic amino acids with selected nucleotides in aqueous solution was undertaken to examine a possible physical basis for the origin of codon assignments. These interactions were studied using 1H nuclear magnetic resonance spectroscopy (NMR). Association constants for the various interactions were determined by fitting the changes in the chemical shifts of the anomeric and ring protons of the nucleoside moieties as a function of amino acid concentration to an isotherm which described the binding interaction. The strongest association of all homocodonic amino acids were with their respective anticodonic nucleotide sequences. The strength of association was seen to increase with increase in the chain length of the anticodonic nucleotide. The association of these amino acids with different phosphate esters of nucleotides suggests that a definite isomeric structure is required for association with a specified amino acid; the 5'-mononucleotides and (3'-5')-linked dinucleotides are the favored geometries for strong associations. Use of heterocodonic amino acids and nonprotein amino acids supports these findings. We conclude that there is at least a physicochemical, anticodonic contribution to the origin of the genetic code.  相似文献   

13.
The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions.  相似文献   

14.
Hydrogen cyanide polymerizes readily to a black solid from which a yellow-brown powder can be extracted by water and further hydrolyzed to alpha-amino acids. These macromolecules could be major components of the dark matter observed on many bodies in the outer solar system, including comets and asteroids. Primitive Earth might therefore have been covered with HCN polymers through bolide bombardment or be terrestrial synthesis. Several instrumental methods were used for the separation and identification of these intriguing polymeric materials, including photoacoustic Fourier transform infrared spectroscopy, supercritical fluid extraction chromatography and pyrolysis mass spectrometry. Our integrated analytical approach revealed fragmentation patterns and chemical functionalities consistent with the presence of polymeric peptide precursors both in HCN polymers and in the Murchison meteorite.  相似文献   

15.
Cometary ices are believed to contain water, carbon monoxide, methane and ammonia, and are possible sites for the formation and preservation of organic compounds relating to the origin of life. Cosmic rays, together with ultraviolet light, are among the most effective energy sources for the formation of organic compounds in space. In order to study the possibility of the formation of amino acids in comets or their precursory bodies (interstellar dust grains), several types of ice mixtures made in a cryostat at 10 K ("simulated cometary ices") were irradiated with high energy protons. After irradiation, the volatile products were analyzed with a quadrupole mass spectrometer, while temperature of the cryostat was raised to room temperature. The non-volatile products remaining in the cryostat at room temperature were collected with water. They were acid-hydrolyzed, and analyzed by ion-exchange chromatography. When an ice mixture of carbon monoxide (or methane), ammonia and water was irradiated, some hydrocarbons were formed, and amino acids such as glycine and alanine were detected in the hydrolyzate. These results suggest the possible formation of "amino acid precursors" (compounds yielding amino acids after hydrolysis) in interstellar dust grains by cosmic radiation. We previously reported that amino acid precursors were formed when simulated primitive planetary atmospheres were irradiated with cosmic ray particles. It will be of great interest to compare the amount of bioorganic compounds that were formed in the primitive earth and that brought by comets to the earth.  相似文献   

16.
Different estimates based on dynamical considerations, lunar cratering rates, Solar System chemical abundances, and the single-impact theory on the origin of the Earth-Moon system suggest that comets and other related small, volatile-rich primitive minor bodies captured by the Earth during the early Archean must have been a major source of volatiles on our planet. It is likely that a substantial fraction of the organic molecules present in the colliding cometary nuclei, which may have included nitrogen bases and the precursors of amino acids, were destroyed due to the high temperatures and shock wave energy associated with the collision. However, the presence of H2O, CN, CH, CO, CO2 and other carbon-bearing molecules and radicals in the atmosphere of the Sun and in circumstellar shells around carbon-rich stars suggests that at least simple carbon species could have survived the cometary collisions. Under the anoxic conditions thought to prevail in the prebiotic terrestrial paleoatmosphere, the post-collisional formation of a large number of excited molecules and radicals, and the rapid quenching of the expanding gaseous ball may have led, upon rapid cooling, to the formation of molecules of biogenic elements and to their eventual deposition in localized environments where complex organic compounds of biochemical significance may have been produced and accumulated.  相似文献   

17.
18.
Gas chromatography/Fourier transform IR spectroscopy/mass spectrometry (GC/FTIR/MS) is a powerful tool for the separation and unambiguous identification of complex mixtures of organic compounds, where the use of two kinds of spectra allows to significantly increase identification reliability. The simplest situation is when acquired spectra can be found in IR and MS databases, or appropriate standards are available; but this is not always the case. Some simulation experiments related to the origins of life and exobiology (e.g., simulation of amino acid pyrolysis during atmospheric entry of space bodies) can be a typical example when one encounters with numerous unknown compounds. To assist their identification by GC/FTIR/MS, recently we suggested quantum chemical calculations of infrared spectra in order to compare them to IR spectra acquired experimentally. The present work summarizes the results obtained by semi-empirical and ab initio methods, discusses their advantages and limitations, considering as test compounds some cyclic amides and amidines derived from amino acids, saturated and unsaturated nitriles (including those of interest for the Titan atmospheric chemistry), acetylenes and some other nitrogen compounds.  相似文献   

19.
It is suggested that the UV radiation, and shock and plasma phenomena which accompanied the hypervelocity impacts of solid bodies (meteorites and comets) onto the surface of the young Earth may have contributed to the synthesis of prebiotic organic molecules in the primitive atmosphere in a larger amount than was thought previously. The mechanisms responsible for this synthesis are discussed using information obtained from recent experimental and theoretical work on macroscopic hypervelocity impacts.  相似文献   

20.
It is generally accepted within the natural sciences that life emerged on Earth by a kind of proto-Darwinian evolution from molecular assemblies that were predominantly formed from the various constituents of the primitive atmosphere and hydrosphere. Evolutionary stages under discussion are: the self-organization of spontaneously formed biomolecules into early precursors of life (protobionts), their stepwise evolution via (postulated) protocells to (postulated) progenotes and the Darwinian evolution from progenotes to the three kingdoms of contemporary organisms (archaebacteria, eubacteria and eukaryotes). Considerable discrepancies between scientists have arisen because all evolutionary stages from prebiotic molecules to progenotes are entirely hypothetical and so are the postulated environmental conditions. We can only theorize that all those environmental conditions that allow the existence of the various forms of contemporary life might have allowed also the development of their precursors. Because of all these difficulties the hypothesis that life came to our planet from a remote place of our universe (panspermia) has been revived. But experimental evidence only supports the view that spores can--under favorable circumstances--survive a relatively short journey within our solar system (interplanetary transfer of life). It is extremely unlikely that spores can survive a journey of hundreds or thousands of years through interstellar space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号