首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified closed system consisting of a plant growth chamber coupled to a decomposition chamber was used to study carbon exchange dynamics. The CO2 produced via the decomposition of wheat straw was used for photosynthetic carbon uptake by wheat plants. The atmosphere of the two chambers was connected through a circuit of known flow rate. Thus, monitoring the CO2 concentrations in both compartments allowed measurement of the carbon exchange between the chambers, and estimation of the rate of respiration processes in the decomposition chamber and photosynthetic rate in the producer chamber. The objective for CELSS research was to simulate a system where a compartment producing food via photosynthesis, would be supplied by CO2 produced from respiration processes. The decomposition of biomass by the decomposer simulated both the metabolism of a crew and the result of a recycling system for inedible biomass. Concerning terrestrial ecosystems, the objective was to study organic matter decomposition in soil and other processes related to permanent grasslands.  相似文献   

2.
Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.  相似文献   

3.
In CELSS both biological and physico-chemical processes have to be used to support the main needs of the crews and to minimize the re-supply of food and air from Earth. The basic idea is to create a complete food chain (an artificial ecosystem), beginning from the crew, with its wastes, and returning to the crew to supply it with food and air. Two main other steps of this food chain are a waste treatment process and a biomass production including higher plants. We set up the connection of these key modules, which we called ECLAS (Ecosysteme Clos Artificiel Simplifie). A growth chamber containing higher plants is connected to a continuous supercritical water oxidation reactor, that converts the harvested biomass into carbon dioxide and enables the photosynthesis of the canopy. To achieve a stable coupling through optimized regulations between the modules, we programmed a modular numerical simulation of the system, in order to assess the involved fluxes and to constrain the last degrees of freedom of the experimental system already built. Simulation results and the first experimental results are here compared.  相似文献   

4.
Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. We report experiments in which cultures of the algae Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments we tested hydrolyzed waste biomass from these same algae to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.  相似文献   

5.
The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100–1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the “higher plants – SLS” system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort.  相似文献   

6.
Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.  相似文献   

7.
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.  相似文献   

8.
Catalytic combustion of inedible biomass of plants in ecological Life Support Systems (LSS) gives rise to gaseous oxides (CO2, NO2, SO2, etc.). Some of them are toxic for plants suppressing their photosynthesis and productivity. Experiments with "Bios-3" experimental LSS demonstrate that a decrease of photosynthetic productivity in a system with straw incineration can jeopardize its steady operation. Analysis of the situation by a mathematical model taking into account absorption parameters of the system in terms of toxic elements makes it possible to formulate requirements for the structure and operation of LSS to provide for its stability. Avenues for further investigation of the problem of toxic stability of LSS are proposed.  相似文献   

9.
An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.  相似文献   

10.
In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.  相似文献   

11.
Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules.  相似文献   

12.
Waste technologies for Mars missions have been analyzed, considering equivalent system mass and interface loads. Storage or dumping seems most appropriate for early missions with low food closure. Composting or other treatment of inedible biomass in a bioreactor seems most attractive for moderate food closure (50-75%). Some form of physicochemical oxidation of the composted residue might be needed for increased food closure, but oxidation of all waste does not seem appropriate due to excess of production of carbon dioxide over demand. More comprehensive analysis considering interfaces with other mission systems is needed. In particular, in-situ resource utilization is not considered, and might provide resources more cheaply than waste processing.  相似文献   

13.
The initial test of the Biosphere 2 agricultural system was to provide a nutritionally adequate diet for eight crew members during a two year closure experiment, 1991-1993. The overall results of that trial are presented in this paper. The 2000 m2 cropping area provided about 80 percent of overall nutritional needs during the two years. Adaptation of the crew to the diet which averaged 2200 calories, 73 g. of protein and 32 g. of fat per person over the course of the two years. The diet was primarily vegetarian, with only small amounts of milk, meat and eggs from the system's domestic animals. The crew experienced 10-20 percent weight loss, most of which occurred in the first six months of the closure reflecting adaptation to the diet and lower caloric intake during that period. Since Biosphere 2 is a tightly sealed system, non-toxic methods of pest and disease control were employed and inedible plant material, domestic animal wastes and human waste-water were processed and nutrients returned to the soil. Crop pests and diseases, especially broad mites and rootknot nematode, reduced yields, and forced the use of alternative crops. Outstanding crops included rice, sweet potato, beets, banana, and papaya. The African pygmy goats were the most productive of the domestic animals. Overall, the agriculture and food processing required some 45% of the crew time.  相似文献   

14.
The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.  相似文献   

15.
This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.  相似文献   

16.
In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in vitamin C and carotene and partly vitamin B group as well as rough fiber.  相似文献   

17.
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.  相似文献   

18.
Mass balances for a biological life support system simulation model.   总被引:1,自引:0,他引:1  
Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here we develop the biochemical stoichiometry for 1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; 2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and 3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source. The large-scale dynamics of a materially-closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multi-food systems and more complex biochemical dynamics while maintaining whole-system closure as a focus.  相似文献   

19.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   

20.
A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4–6 with Pilot Laboratory compartment volume of 185 m3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m2 to 4.0 m2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10–25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification for the flight-qualified modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号