首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following topics are discussed in the context of the development of an airborne moving target radar for long range surveillance: US Navy long range shipborne radar; Cadillac I airborne early warning (AEW) radar; Cadillac II airborne early warning (AEW) radar; airborne moving target indicating (AMTI) radar; related post-war radar activities; and the invention of the displaced center antenna. Among the topics studied is the use of a monopulse antenna in an MTI radar to remove the degradation of the MTI caused by rapid scanning of the antenna. A method of using a monopulse antenna for motion compensation in airborne MTI is discussed.<>  相似文献   

2.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

3.
A discussion of various types of x-band airborne radars is presented together with their systematic development through the years to the present time. Starting with simple, low pulse-repetition frequency (PRF) radars for measuring radar-target range, airborne radar development proceeded with more sophisticated high PRF Doppler radars where radar-target range and range rate were measured simultaneously. The use of Doppler (frequency) in signal processing allowed the separation of moving from nonmoving targets (ground), enabling the detection of moving targets in the presence of ground clutter. More recent developments in waveform generation and selection has resulted in the development of medium PRF radars, whereby a greater degree of tactical flexibility in target detection is achieved by combining the desirable features of both low and high PRF radars. Part of the available literature gives an overview, together with a specific example of the design and performance of an airborne medium PRF radar. Here, however, the systematic evolution of these radars is emphasized and the necessary theoretical background is developed for their performance calculations. Modern day airborne radars may be equipped with all three modes of operation, low, medium, and high PRF, allowing the operator to utilize the mode best suited for the tactical encounter. Low PRF and high PRF radars have been described elsewhere and are given here primarily for the sake of completeness and for the necessary background for developing medium PRF radar equations. They are also needed for developing the reasons why medium PRF radars came into being.  相似文献   

4.
This study considers the clutter suppression and feature extraction of multiple moving targets for airborne high range resolution (HRR) phased array radar. To avoid the range migration problems that occur in the HRR radar data, we divide each HRR profile into nonoverlapping low range resolution segments. No information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector auto-regressive filtering technique to suppress the clutter. Then a relaxation-based parameter estimation algorithm is presented for multiple moving target feature extraction. Numerical results are given to demonstrate the effectiveness of the algorithm  相似文献   

5.
曹杨  冯大政  水鹏朗  向聪 《航空学报》2013,34(7):1654-1662
针对机载多输入多输出(MIMO)雷达杂波分布呈现空时耦合特性,提出一种空时自适应杂波对消器.利用机载MIMO雷达的脉冲回波数据,构造杂波对消器的系数矩阵.通过空时自适应杂波对消器的预处理,可以有效地抑制杂波,并通过与常规空时处理算法的级联,最终可以有效提高动目标的检测性能.实现了由传统地基雷达杂波对消器向机载运动平台的推广.仿真结果表明,这种自适应杂波对消器不仅适用于正侧视雷达,对于非正侧视雷达也同样适用.  相似文献   

6.
利用分数阶Fourier域滤波的机载SAR多运动目标检测   总被引:5,自引:0,他引:5  
 强度相差较大的多运动目标检测是机载合成孔径雷达 ( SAR)技术的一个重点和难点,传统的频域滤波和现代的时频分布方法都无法解决这个问题。首先分析了机载 SAR运动目标回波本质上为线性调频信号,据此提出一种基于分数阶 Fourier域滤波的运动目标检测新方法,并且应用逐次消去的思想有效地解决了强度相差较大的多目标检测问题。仿真的结果验证了算法的有效性。  相似文献   

7.
一种基于u检验的空海目标分类方法   总被引:3,自引:1,他引:2       下载免费PDF全文
阐述了对于机载雷达,测高精度不高,特别是对远距离目标的测高精度更差,因而利用机载雷达提供的高度信息进行空海目标分类存在很大的不确定性。为了能有效地利用目标高度信息进行空海目标分类,把空海目标分类问题看成是一个u检验问题。首先,给出了用于空海目标分类的判别函数;然后,给出了一种决策规则,并推导出决策门限的计算公式和空中目标误判为海面目标的概率的计算公式;最后,通过仿真表明该算法的简易性和有效性。  相似文献   

8.
The aim of ground surveillance is the large scale, continuous and near real time determination of a dynamical ground picture. This task comprises detection and tracking of moving single targets and convoys, mobile weapon systems, and military equipment. The sensors of choice are airborne Ground Moving Target Indicator (GMTI) radar and synthetic aperture radar (SAR). As ground target tracking often suffers from dense target situations, high clutter, and low visibility, the integration and fusion of external background information is essential for providing precise and continuous tracks. We present Multi Hypotheses techniques for tracking several targets in complex ground situations with clutter. Methods to incorporate topographic information, in particular digital road maps, are described and demonstrated.  相似文献   

9.
Approximate expressions are derived for the video clutter spectra in the receiver of a low pulse repetition frequency (PRF), airborne moving target indicator (AMTI), pulse-Doppler radar for both step-scanning and continuous-scanning antennas. The receiver is assumed to process the received waveform with a clutter-tracking oscillator and a window function is employed to obtain short-term spectra. Except for the broadening effects of the window function, it is shown that the clutter spectrum can be simply related to the antenna voltage-gain pattern. It is further shown, in the scanning antenna case, that the combined spectral broadening due to platform motion and antenna scanning cannot be assumed to be the result of the convolution of the separate effects unless the antenna gain pattern has a Gaussian shape. The approximate clutter expressions are illustrated by examples and are shown to agree well with the results of computer calculations.  相似文献   

10.
韦北余  朱岱寅  吴迪 《航空学报》2015,36(5):1585-1595
对超高频(UHF)波段多通道合成孔径雷达(SAR)动目标检测技术进行研究,解决了长相干积累时间导致动目标在方位向散焦严重的问题。采用分块自聚焦技术对多通道SAR地面移动目标指示(GMTI)系统自适应杂波抑制后的SAR图像进行处理,改善杂波抑制后的SAR图像中动目标的聚焦情况,增强动目标与周围剩余杂波的对比度,进而提高恒虚警率(CFAR)检测的性能。与传统杂波抑制后直接进行CFAR检测方法相比较,该方法降低了检测虚警概率。实测数据处理结果显示动目标的信杂比明显提高,动目标方位向聚焦成功,证明了该方法的有效性。  相似文献   

11.
Comparison between monostatic and bistatic antenna configurationsfor STAP   总被引:3,自引:0,他引:3  
The unique characteristics of bistatic radar operation on the performance of airborne/spaceborne moving target indicator (MTI) radars that use space-time adaptive processing (STAP) are discussed. It has been shown that monostatic STAP radar has the following properties. 1) For a horizontal flight path and a planar Earth the curves of constant clutter Doppler (isodops) are hyperbolas. 2) For a sidelooking antenna geometry the clutter Doppler is range independent. 3) Clutter trajectories in the cosφ-F plane (F=normalized Doppler) are in general ellipses (or straight lines for a sidelooking array). We demonstrate that these well-known properties are distorted by the displacement between transmitter and receiver in a bistatic configuration. It is shown that even for the sidelooking array geometry the clutter Doppler is range-dependent which requires adaptation of the STAP processor for each individual range gate. Conclusions for the design of STAP processors are drawn  相似文献   

12.
李少洪  毛士艺  扈晓 《航空学报》1996,17(2):169-176
研究多目标跟踪技术在机载雷达应用中的特殊问题——坐标系的选择、载机运动的稳定与补偿。建立了数学模型 ,进行了仿真研究。研究结果表明 :载机运动的稳定与补偿是机载多目标跟踪中必须重视的问题 ,并得出基于 NED和 RHV的组合坐标系下的模型 ,在机载应用中有很好的性能。优点是易于解耦、避免了非线性、降低了计算量、且有较高的精度  相似文献   

13.
侯颖妮  李道京  洪文 《航空学报》2009,30(4):732-737
基于稀疏阵列和码分正交信号,研究了机载雷达的空时自适应处理(STAP)技术,用于空中预警背景下的地面杂波抑制和运动目标探测。提出了稀疏阵列码分多相位中心孔径综合方法,采用正交编码信号实现多发多收,使综合后不同编码信号的相位中心在数量和分布情况上和满阵天线的相同,从而避免了稀疏阵列天线旁瓣较高的问题;在孔径综合的基础上,利用空时自适应处理方法完成杂波抑制,实现运动目标检测。仿真结果表明了本文方法的有效性。  相似文献   

14.
Analytical expressions are developed that describe the artifacts encountered when translating, rotating, and vibrating point sources are imaged by compact radar ranges (CRRs) emulating airborne synthetic-aperture radar (SAR). The approach starts with coherent-aperture imaging basics and develops a general solution for imaging using the Born approximation. We show that moving-target artifacts on CRRs are similar to the artifacts encountered with SAR moving targets, suggesting that CRRs may be suitable for such emulations.  相似文献   

15.
李晓明  冯大政 《航空学报》2008,29(1):170-175
 提出了一种机载相控阵雷达杂波抑制的两级降维空时自适应处理(STAP)方法,即:先根据杂波分布先验信息进行空时局域化(JDL)降维处理,然后对局域化输出进行多级维纳滤波(MWF),实现二次降维。该方法综合了固定结构和自适应结构降维技术的优点,将JDL处理引入到MWF中,从而有效降低MWF的杂波自由度。计算机仿真和理论分析表明本文方法比JDL自适应处理方法和全空时MWF方法具有更小的运算量,对阵元随机幅相误差具有很好的容差能力,是一种稳健的两级降维自适应处理方法。最后,基于仿真和实测数据的实验验证了算法的有效性。  相似文献   

16.
机载火控雷达距离拖引目标的交互式多模型跟踪方法   总被引:2,自引:1,他引:1  
针对机载火控雷达中可能出现的距离门拖引欺骗,给出了一种基于交互式多模型的目标跟踪方法。把该方法和常规的单目标跟踪方法进行了仿真比较。结果表明,该方法能充分利用欺骗回波测量,对释放距离拖引欺骗干扰的目标维持较稳定地跟踪,并能获得较高的目标跟踪精度。  相似文献   

17.
Airborne radar relies on Built-in-Test (BIT) for fault detection, fault isolation and system calibration. The capability of BIT is often limited by space, weight, size and cost considerations. Furthermore, the radar does not have a test target that will allow BIT to perform in flight, closed-loop functional test of the complete radar system. This paper describes a fiber-optic based radar test target unit that provides a delayed replica of the transmitted radar signal. The unit will intercept a small amount of radar-transmitted energy, delay it in the fiber, then feed it back into the radar producing a calibrated “echo” at a predetermined radar range. The unit can be installed as part of the airborne radar. The details on the design and testing of a proof-of-concept unit are also given  相似文献   

18.
Space-based radar (SBR) is capable of providing flexible wide-area coverage of air, land, and sea targets. Numerous studies have been carried out in the United States and Canada in recent years to investigate different concepts for SBR. The design of a suitable radar signal processor (RSP) is challenging due to the effects caused by the moving platform on target integration and clutter spectral spread. A candidate RSP is described that uses a corporate fed array (CFA) antenna as its primary radar sensor. The algorithmic definitions of the signal processing functions are provided; the relationships between these functions and the reasons for their location in the signal processing chain are also discussed. In addition, techniques for reducing the computational requirements are also presented  相似文献   

19.
The AN/APG-76 multimode radar was designed and developed for a multimode attack fighter application requiring rapid search, detection, identification, and precision location of both airborne and surface targets from long standoff ranges under adverse weather conditions. Unique is the radar's ability to generate SAR images of a selected area while simultaneously detecting and tracking all-speed moving objects located within that imaged region. Northrop Grumman Norden Systems has recently upgraded and adapted this radar to smuggling interdiction and related law enforcement missions. These adaptations have added an integrated GPS/INS subsystem for enhanced self-navigation and target location accuracy, a long range wide-band digital data link and ground station for mission control and data dissemination, a 3-D interferometric SAR imaging capability for detailed high resolution topographic mapping, and 1 meter and 0.3 meter resolution SAR modes for positive target identification. Additionally, the radar has been installed into wing-mounted pods and adapted for side-looking and 360 degree coverage applications. Automatic target detection and enhanced-range sea-surveillance and air-targeting modes are also now available through the use of open architecture commercial processors and non-proprietary transportable programming languages  相似文献   

20.
Space-time adaptive processing (STAP) has been widely discussed for airborne radar systems to improve the system performance of detecting targets. This is especially true for airborne early warning (AEW) radar, which should find long-range and small radar cross section (RCS) targets such as the stealth aircraft and missiles. However, in existing airborne radar literature, STAP is mainly considered for clutter and jamming rejection in side-looking airborne radar (SLAR) applications. There have been fewer discussions on airborne radar with non-side-ways looking array radar (non-SLAR). The STAP of non-SLAR such as forward looking array radar is also very important and can not be avoided for airborne radar to detect targets in all directions. The STAP of the non-SLAR is studied here. A scheme has been proposed, which is processed by the way of STAP combined with multiple staggered medium pulse repetition frequencies (PRFs). We further study the selection of PRFs in order to make the scheme more available for non-SLAR radar. We analyze two typical non-SLAR cases, i.e., inclined-sideways looking array and forward looking array. We examine this scheme by comparing the performances of three processing systems under the criteria of range-velocity blind zone minimization. Computer simulation results show the multiple-PRFs STAP scheme is feasible for non-SLAR and can be applied to phased-array AEW radar systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号