首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The National Aeronautics and Space Administration (NASA) New Millennium Program (NMP) is a technology development and validation program that will flight-validate advanced, new technologies with space flight applications. NMP's purpose is twofold. First, it will develop technologies that will enable future spacecraft to be smaller, more capable and reliable, and to be launched more frequently. Second, it will validate the technologies in flight to reduce the risks to future science missions that fly these technologies for the first time. To measure the program's success, NMP has devised a set of criteria that stresses the relevance of technologies selected for flight validation to NASA's 21st-century science mission needs. Also, NMP has instituted a ‘risk management’ policy, where, through a combination of adequate resources and early risk assessment and risk mitigation plans for the technologies, the overall risk of the NMP flights can be rendered acceptable.  相似文献   

2.
The National Aeronautics and Space Administration's (NASA's) New Millennium Program (NMP) has embarked on a technology flight-validation demonstration program to enable the kinds of missions that NASA envisions for the 21st century. Embedded in this program is the concept of rapid mission development supported by a fast-track procurement process. This process begins with the decision to initiate a procurement very early in the program along with the formation of a technical acquisition team. A close working relationship among the team members is essential to avoiding delays and developing a clear acquisition plan. The request for proposal (RFP) that is subsequently issued seeks a company with proven capabilities, so that the time allotted for responses from proposers and the length of proposals they submit can be shortened. The fast-track procurement process has been demonstrated during selection of NMP's industrial partners and has been proven to work.  相似文献   

3.
NASA's proposed roadmap for robotic Mars exploration over the next decade is influenced by science goals, technology needs and budgetary considerations. These requirements could introduce potential changes to the succession of missions, resulting in both technology feed forward and heritage. For long duration robotic surface missions at locations, where solar power generation is not feasible or limited, Radioisotope Power Systems (RPS) could be considered. Thus, RPSs could provide enabling power technologies for some of these missions, covering a power range from 10s of milliwatts to potentially a kilowatt or even higher. Currently, NASA and DoE with their industry partners are developing two RPSs, both generating about 110 W(e) at BOL. These systems will be made available as early as 2009. The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)—with static power conversion—was down-selected as a potential power source for the MSL mission. Development of small-RPSs is in a planning stage by NASA and DoE; potentially targeting both the 10s of milliwatts and 10s of watts power ranges. If developed, Radioisotope Heat Unit (RHU) based systems—generating 10s to 100s of milliwatts—could power small adjunct elements on larger missions, while the GPHS module-based systems—each generating 10s of watts—could be stacked to provide the required power levels on MER class surface assets. MMRTGs and Stirling Radioisotope Generators (SRGs) could power MSL class or larger missions. Advanced Radioisotope Power Systems (ARPS) with higher specific powers and increased power conversion efficiencies could enhance or even enable missions towards the second half of the next decade. This study examines the available power system options and power selection strategies in line with the proposed mission lineup, and identifies the benefits and utility of the various options for each of the next decade launch opportunities.  相似文献   

4.
《Acta Astronautica》1999,44(2-4):187-192
The Advanced Deep Space System Development Program is managed by the Jet Propulsion Laboratory for NASA and is also called X2000. X2000 is organized to create advanced flight and ground systems for the exploration of the outer planets and beyond; it has been created to develop the engineering elements of flight and ground systems. Payloads will be developed by another team. Each X2000 delivery gets its requirements from a set of planned missions, or “mission customers”.The X2000 First Delivery Project supports missions to the Sun (to 4 solar radii), Europa (looking for a liquid ocean), Mars (in support of several Mars missions including a sample return), a comet (including a sample return), and Pluto followed by a trip into the Kuiper belt. This set of missions leads to some outstanding requirements:
  • 1.1. Long-life (10–12 years)
  • 2.2. Total Ionizing Dose of 4 Mrad (for a Europa Orbiter)
  • 3.3. Average power consumption less than or equal to 150 Watts
  • 4.4. Autonomous operations that result in an extreme reduction in operations costs
This paper describes the X2000 first delivery and its technologies following a brief overview of the program.  相似文献   

5.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

6.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

7.
Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.  相似文献   

8.
Within the space program of the Federal Republic of Germany the microgravity program in connection with the utilization of SPACELAB constitutes a central task which determines the long-term program concepts and also their relation to German participation in future ESA programs.The scientific preparatory programs under way for some years now have made further progress. Extensive flight experience and valuable scientific results were obtained on the basis of successful rocket pre-programs. The present paper describes the process in which scientific and organisational priorities are being defined for the planning and execution of the experimental programs.In order to obtain a sufficient number of flight opportunities, payloads for SPACE SHUTTLE missions, in particular under the NASA GAS Program, as well as experimental equipment such as the materials laboratory (MSDR) for FSLP are being developed. The German program focuses on preparing a German SPACELAB mission D1 planned for 1985, which is intended to verify the applicability and efficiency of manned research laboratories for industry and the scientific community. A second emphasis is on preparing the use of SHUTTLE-supported re-usable space platforms.  相似文献   

9.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   

10.
The deep space 1 extended mission   总被引:2,自引:0,他引:2  
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.  相似文献   

11.
航天器编队飞行及其关键技术的开发   总被引:1,自引:0,他引:1  
简要论述由分布式航天器系统构成的空间编队飞行的概念 ,扼要介绍 NASA为未来航天器编队飞行项目开发的几项关键技术 ,着重阐明基于 GPS的分散式编队飞行控制和相对导航技术能充当未来多星编队飞行任务的导航系统 ,从而使未来的空间科学研究发生深刻变化  相似文献   

12.
Manned spaceflight has been an important element of the German space program over the last decades. This is demonstrated by the nationally managed space missions Spacelab D-l (1985), D-2 (1993), and MIR '92 as well as by the participation in the 1st Spacelab mission FSLP (1983), the NASA missions IML-1 (1992) and IML-2 (1994), as well as in the ESA missions EUROMIR '94 and '95. On February 12th, this year, the German cosmonaut Reinhold Ewald was launched together with his Russian colleagues Wasilij Zibliew and Alexander Lasudkin onboard of a Soyuz spacecraft for another stay of a German cosmonaut onboard of the Russian Space Station MIR. This mission--the so-called German/Russian MIR '97--was, of course, another cornerstone with regard to the cooperation between Russian and German space organizations. The cooperation in the area of manned missions began 1978 with the flight of the German cosmonaut Sigmund Jahn onboard of Salyut 6, at that time a cooperation between the Soviet Union and the German Democratic Republic in the frame of the Interkosmos Program. In March 1992, it was followed by the flight of Klaus Dietrich Flade with his stay onboard of MIR. After two further successful ESA missions, EUROMIR '94 and '95 with the two German cosmonauts Ulf Merbold and Thomas Reiter and with a marked contribution of German scientists, the decision was taken to perform another German/Russian MIR mission, the so-called MIR '97. In Germany, MIR'97 was managed and performed in a joint effort between several partners. DARA, the German Space Agency, was responsible for the overall program and project management, while DLR, the German Aerospace Research Establishment, was responsible for the cosmonaut training, for medical operations, for the mission control at GSOC in Oberpfaffenhofen as well as for user support.  相似文献   

13.
Phoenix--the first Mars Scout mission   总被引:2,自引:0,他引:2  
Shotwell R 《Acta Astronautica》2005,57(2-8):121-134
NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.  相似文献   

14.
NASA一直致力于先进航天技术探索与应用,其中,为推动纳米技术的发展与应用,规划了20年的研究发展计划。相关纳米技术被认为能够精确实现材料的预想性能,并可制备出更小、更具环境稳定性的航天器。文章跟踪介绍NASA在纳米技术领域的研究和应用进展,包括:1)先进结构材料及其应用;2)能量的生成与储存;3)热控制材料及其应用;4)纳米传感器的发展;5)推进剂及推进器的革新等。  相似文献   

15.
NASA's plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized weak stability boundary in the Earth–Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.  相似文献   

16.
The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.  相似文献   

17.
归因于空间环境的航天器故障与异常   总被引:1,自引:0,他引:1  
天然空间环境对航天器设计、研制和运行的影响是NASA马歇尔空间飞行中心系统分析和集成实验室电磁与航空宇宙环境部组织编写的一系列NASA RP报告的主题.其中,NASA RP-1390详细概述了天然空间环境7个主要环境因素,包括它们的简单定义、相关的型号计划事项以及对各种航天器分系统的影响.该报告提供100多个从1974...  相似文献   

18.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   

19.
《Acta Astronautica》2007,60(4-7):488-496
Countermeasures are necessary to offset or minimize the deleterious changes in human physiology resulting from long duration space flight. Exposure to microgravity alters musculoskeletal, neurosensory, and cardiovascular systems with resulting deconditioning that may compromise crew health and performance. Maintaining health and fitness at acceptable levels is critical for preserving performance capabilities required to accomplish specific mission tasks (e.g.—extravehicular activity) and to optimize performance after landing. To enable the goals of the exploration program, NASA is developing a new suite of exercise hardware such as the improved loading device, the SchRED. This presentation will update the status of current countermeasures, correlate hardware advances with improvements in exercise countermeasures, and discuss future activities for safe and productive exploration missions.  相似文献   

20.
The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号