首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Space and clinostatic experiments revealed that plant cell structure and metabolism rearrangements depend on taxonomical position and physiological state of objects, growth phase and real or simulated microgravity influence duration. It was shown that clinostat conditions reproduce only a part of microgravity biological effects. It is established that various responses occur in microgravity: 1) rearrangements of cytoplasmic organelles ultrastructure and calcium balance; 2) physical-chemical properties of the plasmalemma are changed; 3) enzymes activity is often enhanced. These events provoke the acceleration of growth and differentiation of cells and their aging as a result; at the same time some responses can be considered as cell adaptation to microgravity.  相似文献   

2.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

3.
Hypergravity stimuli, gravitational acceleration of more than 1 x g, decrease the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls by decreasing the cell wall extensibility via an increase in the molecular mass of matrix polysaccharides. An increase in the pH in the apoplastic fluid is hypothesized to be involved in the processes of the increase in the molecular mass of matrix polysaccharides due to hypergravity. However, whether such physiological changes by hypergravity are induced by normal physiological responses or caused by physiological damages have not been elucidated. In the present study, we examined the effects of the removal of hypergravity stimuli on growth and the cell wall properties of azuki bean and maize seedlings to clarify whether the effects of hypergravity stimuli on growth and the cell wall properties are reversible or irreversible. When the seedlings grown under hypergravity conditions at 300 x g for several hours were transferred to 1 x g conditions, the growth rate of azuki bean epicotyls and maize coleoptiles and mesocotyls greatly increased within a few hours. The recovery of growth rate of these organs was accompanied by an immediate increase in the cell wall extensibility, a decrease in the molecular mass of matrix polysaccharides, and an increase in matrix polysaccharide-degrading activities. The apoplastic pH also decreased promptly upon the removal of hypergravity stimuli. These results suggest that plants regulate the growth rate of shoots reversibly in response to hypergravity stimuli by changing the cell wall properties, by which they adapt themselves to different gravity conditions. This study also revealed that changes in growth and the cell wall properties under hypergravity conditions could be recognized as normal physiological responses of plants. In addition, the results suggest that the effects of microgravity on plant growth and cell wall properties should be reversible and could disappear promptly when plants are transferred from microgravity to 1 x g. Therefore, plant materials should be fixed or frozen on orbit for detecting microgravity-induced changes in physiological parameters after recovering the materials to earth in space experiments.  相似文献   

4.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

5.
Mechanical processes and factors involved in gravireception of a plant cell qualitatively considered and their changes caused by microgravity and clinostat modeling conditions are discussed. It is supposed that the most of the cell microgravity effects as well as clinostat modeling effects on a cell may be attributed to the generalized unspecific reaction of a cell to external influence.  相似文献   

6.
随着载人航天事业的不断发展,空间失重环境引起的航天员健康问题(心血管疾病、免疫抑制、肌肉萎缩、骨质疏松等)日益突出,这已成为人类探索空间的一大阻碍.越来越多的研究关注到微重力条件下机体及细胞的变化.近期的研究表明,在细胞水平上,微重力会引起细胞降解,改变细胞骨架,并造成细胞在分子水平(如细胞增殖、分化、迁移、粘附、信号转导等过程)的一系列改变.本文对微重力条件下免疫细胞、内皮细胞、骨细胞、癌细胞的相关研究进行了归纳总结,研究结果可为微重力条件下机体及相关细胞的研究提供指导,为治疗或缓解微重力条件造成的疾病提供方法和思路.   相似文献   

7.
Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.  相似文献   

8.
The effects of microgravity on Jurkat cells--a T-lymphoid cell line--was studied on a sounding rocket flight. An automated pre-programmed instrument permitted the injection of fluorescent labelled concanavalin A (Con A), culture medium and/or fixative at given times. An in-flight 1 g centrifuge allowed the comparison of the data obtained in microgravity with a 1 g control having the same history related to launch and re-entry. After flight, the cells fixed either at the onset of microgravity or after a or 12 minute incubation time with fluorescent concanavalin A were labelled for vimentin and actin and analysed by fluorescence microscopy. Binding of Con A to Jurkat cells is not influenced by microgravity, whereas patching of the Con A receptors is significantly lower. A significant higher number of cells show changes in the structure of vimentin in microgravity. Most evident is the appearance of large bundles, significantly increased in the microgravity samples. No changes are found in the structure of actin and in the colocalisation of actin on the inner side of the cell membrane with the Con A receptors after binding of the mitogen.  相似文献   

9.
Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in a regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.  相似文献   

10.
The changes of [Ca2+]i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station "Salyut 6". These results: 1) indicate that observed Ca(2+)-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca2+ influx through membranes. In model presented, I propose that Ca(2+)-activated channels in plasma membrane in response to microgravity allow the movement of Ca2+ into the root cells, causing a rise in cytoplasmic free Ca2+ levels. The latter, in its turn, may induce the inhibition of a Ca2+ efflux by Ca(2+)-activated ATPases and through a Ca2+/H+ antiport. It is possible that increased cytosolic levels of Ca2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca2+]i. Plant cell can response to such a Ca2+ rise by an enhancement of membranous Ca(2+)-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca(2+)-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca2+ to plant cell.  相似文献   

11.
Analysis of structural-and-functional rearrangements in the organelles of meristematic, differentiating and differentiated cells of pea root under microgravity demonstrated certain consistencies in their manifestation, namely: a) heterogeneity of the organelles in a cell population with respect to the degree of the rearrangements; b) coincidence of a spatial succession in development; c) increased reactivity under changes in functional load during cell growth and differentiation; d) enhanced activity when a cell loses its specific functions (replacement of functions). It is assumed that microgravity does not prevent the development of certain adaptative reactions of organisms at the cellular level.  相似文献   

12.
During short-term microgravity in sounding rocket experiments (6 min.) the cytoskeleton undergoes changes and therefore it is possible that cell processes which are dependent on the structure and function of the cytoskeleton are influenced. A cell fusion experiment, initiated by a short electric pulse, was chosen as a model experiment for this sounding rocket experiment. Confluent monolayers of primary human skin fibroblasts, grown on coverslips, were mounted between two electrodes (distance 0.5 cm) and fused by discharging a capacitor (68 micro F; 250 V; 10 msec) in a low conductive medium. During a microgravity experiment in which nearly all the requirements for an optimal result were met (only the recovery of the payload was delayed) results were found that indicated that microgravity during 6 minutes did not influence cell fusion since the percentage of fused products did not change during microgravity. Within the limits of discrimination using morphological assays microgravity has no influence on the actin/cortical cytoskeleton just after electrofusion.  相似文献   

13.
This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 105 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.  相似文献   

14.
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.  相似文献   

15.
Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.  相似文献   

16.
Function of the cytoskeleton in gravisensing during spaceflight.   总被引:12,自引:0,他引:12  
Since astronauts and cosmonauts have significant bone loss in microgravity we hypothesized that there would be physiological changes in cellular bone growth and cytoskeleton in the absence of gravity. Investigators from around the world have studied a multitude of bone cells in microgravity including Ros 17/2.8, Mc3T3-E1, MG-63, hFOB and primary chicken calvaria. Changes in cytoskeleton and extracellular matrix (ECM) have been noted in many of these studies. Investigators have noted changes in shape of cells exposed to as little as 20 seconds of microgravity in parabolic flight. Our laboratory reported that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) but a paradoxical 2-fold increase in release of the osteoblast autocrine factor PGE2 when compared to ground controls. In addition, a collapse of the osteoblast actin cytoskeleton and loss of focal adhesions has been noted after 4 days in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the actin cytoskeleton in cells grown in microgravity conditions, however flown cells under 1 g conditions maintained normal actin cytoskeleton and fibronectin matrix. The changes seen in the cytoskeleton are probably not due to alterations in fibronectin message or protein synthesis since no differences have been noted in microgravity. Multiple investigators have observed actin and microtubule cytoskeletal modifications in microgravity, suggesting a common root cause for the change in cell architecture. The inability of the O g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways that are connected to the cytoskeleton. Cell cycle is dependent on the cytoskeleton. Alterations in cytoskeletal structure can block cell growth either in G1 (F-actin microfilament collapse), or in G2/M (inhibition of microtubule polymerization during G2/M-phase). We therefore hypothesize that microgravity would inhibit growth in either G1, or G2/M.  相似文献   

17.
Astronauts and experimental animals in space develop the anemia of space flight, but the underlying mechanisms are still unclear. In this study, the impact of simulated microgravity on proliferation, cell death, cell cycle progress and cytoskeleton of erythroid progenitor-like K562 leukemia cells was observed. K562 cells were cultured in NASA Rotary Cell Culture System (RCCS) that was used to simulate microgravity (at 15 rpm). After culture for 24 h, 48 h, 72 h, and 96 h, the cell densities cultured in RCCS were only 55.5%, 54.3%, 67.2% and 66.4% of the flask-cultured control cells, respectively. The percentages of trypan blue-stained dead cells and the percentages of apoptotic cells demonstrated no difference between RCCS-cultured cells and flask-cultured cells at every time points (from 12 h to 96 h). Compared with flask-cultured cells, RCCS culture induced an accumulation of cell number at S phase concomitant with a decrease at G0/G1 and G2/M phases at 12 h. But 12 h later (from 24 h to 60 h), the distribution of cell cycle phases in RCCS-cultured cells became no difference compared to flask-cultured cells. Consistent with the changes of cell cycle distribution, the levels of intercellular cyclins in RCCS-cultured cells changed at 12 h, including a decrease in cyclin A, and the increasing in cyclin B, D1 and E, and then (from 24 h to 36 h) began to restore to control levels. After RCCS culture for 12–36 h, the microfilaments showed uneven and clustered distribution, and the microtubules were highly disorganized. These results indicated that RCCS-simulated microgravity could induce a transient inhibition of proliferation, but not result in apoptosis, which could involve in the development of space flight anemia. K562 cells could be a useful model to research the effects of microgravity on differentiation and proliferation of hematopoietic cells.  相似文献   

18.
It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the “Shen Zhou IV” spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.  相似文献   

19.
Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% (p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO–EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.  相似文献   

20.
模拟失重对培养心肌细胞形态和结构的影响   总被引:7,自引:0,他引:7  
本实验是利用回转器模拟失重对离体培养大鼠乳鼠的心肌细胞形态和结构的影响.在光学显微镜和荧光显微镜下观察发现,细胞的形态由细长梭形变成椭圆形甚至为圆形,并且通过荧光标记后的细胞骨架的排列由纵形变成辐射状.同时在对细胞进行测量发现,细胞体积缩小近40%,细胞长短径比例减少近70%.上述结果提示模拟失重对培养心肌细胞的形态和结构有显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号