首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为了研究30cm离子推力器三栅极组件设计参数对预估寿命的影响,在完成失效模式分析的基础上,通过PIC-MCC方法对离子推力器三栅极组件的离子溅射速率进行了计算,建立起栅孔二维寿命预估模型,并针对栅极设计参数对预估寿命的影响进行研究。结果显示:导致三栅极组件的主要失效模式为5kW高功率模式下的离子直接轰击所造成的栅极早期结构失效,且减速栅的过快离子溅射腐蚀成为影响三栅极组件寿命的关键,而不同工作模式不会产生新的失效方式,仅影响栅极的离子溅射速率以及寿命;在现有三栅极设计参数条件下,当推力器工作时,栅极引出的离子束流处于明显欠聚焦状态,且加速栅寿命预估值约为9062h,而减速栅约为2642h;通过PIC-MCC方法得到的栅极三个关键设计参数对寿命的影响模拟结果显示,降低加速栅电压对提升减速栅寿命的作用较小;缩小加速栅与减速栅冷态间距后,离子溅射速率会随着冷态间距的缩小逐渐降低,冷态间距由1mm缩小至0.6mm后,减速栅在5kW工况下的工作寿命可提升至10726h,且经试验验证该间距可满足推力器力学环境试验要求;缩小屏栅孔径对改变离子束流引出形状具有显著作用,单孔束流发散角度随着屏栅孔径的缩小出现了明显降低,且束流离子几乎不会再直接轰击至减速栅上游区域,当屏栅孔径由1.9mm缩小至1.6mm后,减速栅工作寿命可提升至9259h;分析结果对后续开展栅极组件的寿命优化设计提供了参考。  相似文献   

2.
介绍了基于联合仿真的光纤陀螺(FOG)代码验证技术,并把该技术应用于光纤陀螺(FOG)闭环反馈模块的验证中。应用Questasim与Matlab/Simulink软件的各自优点,进行联合仿真,可以提高设计效率,降低研究成本。  相似文献   

3.
针对目前航空发动机控制系统设计仅以单一的发动机为对象,没有考虑直升机与发动机之间的动态耦合的问题,基于Matlab/Simulink高级图形的仿真条件,建立了1种适用于快速控制原型的UH60直升机/T700发动机一体化综合模型,从而为发动机故障诊断提供可靠仿真平台。仿真结果表明:在直升机与涡轴发动机耦合因素影响条件下,基于改进卡尔曼滤波器,可实现发动机气路部件的故障诊断,并验证了其有效性。  相似文献   

4.
获得射频离子推力器放电与引出特性调节规律,是制定性能调节控制优化算法的核心问题。为了获得射频离子推力器放电与引出特性,采用数值计算与试验研究的手段,对LRIT-40射频离子推力器放电与引出特性调节规律开展了研究。研究结果表明:模型能够正确描述放电与引出特性调节规律;射频功率适合作为精调参数,用于连续平滑地调节性能;屏栅电压调节存在明显拐点,当屏栅电压低于拐点,可配合射频功率对性能进行精调;当屏栅电压高于拐点,适合作为快速响应调节参数;65W~85W射频功率、800V~1500V屏栅电压能够实现推力1.5mN~4.7mN,比冲1300s~3920s宽范围调节,制定性能调节优化控制算法时,应根据需要选取最小参数调节区间。  相似文献   

5.
离子推力器加速栅寿命概率性分析   总被引:1,自引:5,他引:1  
交换电荷离子对加速栅极的溅射腐蚀是离子推力器的关键失效模式之一,基于交换电荷离子对加速栅溅射腐蚀的物理机理,对离子推力器加速栅工作寿命进行了概率性建模。利用该模型对20cm Xe离子推力器加速栅寿命和其达到预期寿命的可靠度进行了评估。结果显示加速栅的寿命近似服从高斯分布,当推力器工作环境压力近似6.7×10-3Pa时,加速栅工作寿命达到3kh的可靠度为0.9352。  相似文献   

6.
为了建立国内自行研制的20cm口径LIPS-200环型会切磁场离子推力器放电室的热模型,研究了放电室内等离子体的产生过程,得到了二次电子的温度、离子密度以及电子密度分布规律,在此基础上得到放电室各个关键部件的电流沉积和能量沉积热模型。以热模型计算结果为依据,进行了推力器稳态工作下的有限元热分析以及热平衡验证试验。结果显示:推力器处于稳定放电时,放电室内电子温度分布范围为2~4e V;电离基本发生在放电室轴线附近,此处电离产生率和电子温度最高,并且整个放电室内离子密度约为1017/m3;放电室的内表面能量沉积主要来自二次电子及Xe离子。  相似文献   

7.
离子推力器加速栅溅射腐蚀失效是制约离子推力器寿命的关键失效模式之一.针对离子推力器长寿命、多功率条件下运行的特点,基于坑和凹槽的溅射腐蚀数据,建立模型对其进行寿命预测.通过研究离子推力器加速栅中心凹槽腐蚀深度在不同功率段下随工作时间的变化规律发现:运行功率顺序对加速栅凹槽腐蚀率影响较小,进而采用累积损伤理论建立离子推力器多功率段下运行的寿命预测模型.最后, 对美国的NASA's Evolutionary Xenon Thruster(NEXT)进行了寿命预测,预测结果寿命为46041h,与试验结果符合较好.   相似文献   

8.
离子推力器的极限寿命最终取决于栅极的极限寿命。针对LIPS-200离子推力器延长寿命到20000h以上的工程应用需求,在分析离子推力器极限寿命所对应关键失效模式及磨损机理的基础上,基于加速电压能够有效调节关键失效模式发展进程的工作机制,提出了具有普适性的离子推力器栅极极限寿命优化的恒定加速电压方法和步进调节加速电压方法。结合LIPS-200离子推力器寿命试验的过程及最终结果数据,在完全继承推力器现有技术状态和成熟度的前提下,采用恒定加速电压方法可以将推力器的极限寿命从现有的14649h提高到17300h,采用步进调节加速电压方法可以将推力器极限寿命提高到20400h,从而实现LIPS-200延长寿命目标。  相似文献   

9.
为了改进氙离子推力器传统优化实验方法,针对环切场放电室设计多维优化调节机构,通过步进电机配合电磁铁实现放电室设计参数的在线实时调节。实验中在线调节放电室长径比、中间磁极靴位置、阴极顶位置等参数,得到了放电室性能影响规律,经迭代实验获取了优化后的放电室构型及磁场参数。优化后的推力器性能曲线"膝点"较正交实验结果更加靠后,在工质利用率80%~90%区间内,束离子电离能耗低于正交实验优化结果。在线优化实验方法极大缩短了离子推力器设计周期,降低研制成本,并弥补了传统方法需多次破空导致参数一致性差的不足。  相似文献   

10.
基于Matlab/Simulink仿真环境,结合GSP软件提供的通用部件特性,建立了某型大涵道比涡扇发动机的部件级模型.以此模型为基础,建立流量平衡与功率平衡的非线性方程组,并选取高低压转速以及发动机各部件压比为初猜值,对发动机设计点进行稳态求解.对比分析了牛顿-拉夫僧法、拟牛顿法和最速下降法的求解数据,最终选择拟牛顿法作为本发动机模型的稳态求解方法.  相似文献   

11.
基于MATLAB/Simulink的某型号巡航式靶弹弹道设计与仿真   总被引:2,自引:0,他引:2  
通过某型号巡航式靶弹的弹道设计与仿真 ,着重说明利用MATLAB/Simulink仿真弹道的方法 ,并给出了相应的仿真结果。  相似文献   

12.
电子回旋共振离子推力器栅极光学系统的PIC/MCC模拟   总被引:1,自引:1,他引:1  
为了寻求日益昂贵的电推力器工质氙气的替代品,探讨氩气作为电子回旋共振离子推力器工质的适用性,采用混合PIC方法模拟了氩等离子体在栅极光学系统中输运过程,分析了氩离子束流的聚焦效果、氩等离子体的空间分布和流动特性。结果表明:氩离子束流在已有栅极系统中具有良好的聚焦效果;束流中CEX离子仅占离子总数的万分之一,影响较小;氩气作为工质时,离子喷射速度为75km/s,加速栅极后回流速度为38km/s,与电动力学理论预估值一致。  相似文献   

13.
环型会切场离子推力器和柱型会切场离子推力器是当前广泛应用和研究的两种会切场离子推力器。基于30cm环型会切场离子推力器LIPS-300H和30cm柱型会切场离子推力器LIPS-300Z,对比研究了两类会切场离子推力器各自优劣及其机理。首先分析了两种会切场原理,总结给出了两种会切场差异,然后实验对比研究了两种会切场离子推力器束流均匀性、放电效率和寿命。实验结果显示:LIPS-300H相比LIPS-300Z在3kW和5kW工况下束流密度峰值分别降低25%和19%,放电电压分别降低7.8V和6.2V,放电损耗分别增加20W/A和32W/A,屏栅预测寿命分别增加6.7倍和3.2倍。试验结果表明:虽然LIPS-300Z比LIPS-300H具有放电损耗低的优点,但其较差的束流均匀性,较高的阳极电压和双荷离子比,使其在寿命和可靠性方面劣于LIPS-300H。  相似文献   

14.
马隆飞  贺建武  杨超  段俐  康琦 《推进技术》2021,42(2):474-480
为了满足中国科学院空间引力波探测——"空间太极计划"对航天器推进系统提出的微牛量级推力高精度控制需求,基于感性耦合等离子体自持放电,设计了一套微牛级射频离子推力器(μRIT-1).通过理论分析与实验验证,完成了μRIT-1关键结构组件优化工作,包括射频天线、放电室及离子光学系统.根据实验结果,μRIT-1采用7匝线直径...  相似文献   

15.
为了对不同环境温度造成的30cm离子推力器三栅极组件离子刻蚀速率的影响进行分析,采用有限元仿真与试验验证相结合的方法,计算并试验验证了不同环境温度下的三栅极组件热平衡温度以及栅极间的相对位移变化,采用流体方法模拟了不同环境温度(20℃,-70℃,-120℃和-170℃)对三栅极组件的刻蚀影响,并结合短期寿命试验结果进行验证。结果显示:随着环境温度的降低,屏栅达到温度平衡的时间无变化,而加速栅温度平衡所需的时间则明显延长,20℃下的屏栅和加速栅热仿真结果与室温下推力器热平衡试验结果比对误差分别为7%和5%;其次环境温度的降低,会导致屏栅与加速栅的中心间距和边缘间距均缩小,而加速栅和减速栅的边缘间距却逐渐拉大,仿真结果与栅极热间距摄像测量结果符合性较好;根据三栅极组件的栅孔径扩大率随环境温度变化的计算结果来看,加速栅中心和减速栅边缘是离子刻蚀的主要位置,轰击至加速栅中心区域的离子数速率约是边缘的3倍,而轰击至减速栅边缘区域的离子数速率是中心的2.5倍,且环境温度的降低对加速栅中心区域离子刻蚀的影响更为强烈;经2100h的寿命试验验证,仿真结果与试验结果基本符合,误差经分析认为主要来自于流体方法的参数设置过程以及栅孔壁面均匀刻蚀的计算假设。  相似文献   

16.
为获得推力器的性能与推力器工况之间的变化规律,利用等离子体密度平衡方程、中性气体密度平衡方程、中性气体功率平衡方程、电子功率平衡方程构成的全域模型对氙工质射频离子推力器开展了数值模拟研究.结果表明,放电室长径比(L/R)的改变引起放电室壁上消耗功率的变化,从而影响推力器的性能.在放电室体积和工质流率不变的情况下,放电室...  相似文献   

17.
为了实现多模式离子推力器在宽功率范围内最优性能和可靠性,基于30cm多模式离子推力器通过实验开展了阴极和中和器羽状模式转变点流率、放电电压30V对应阴极流率和放电损耗曲线与束电流关系研究。30cm多模式离子推力器束电流从0.3A增加到3.3A时,阴极羽状模式转变点流率值从0.017mg/s增加到0.163mg/s,放电电压30V对应阴极流率从0.129mg/s增加到0.231mg/s,中和器羽状模式转变点流率从0.030mg/s增加到0.191mg/s。随放电室工质利用率的增加,在小束电流下放电损耗迅速增加;当束电流大于1.5A时,放电损耗对放电室工质利用率的变化较为迟钝。基于上述流率特性实验结果完成了30cm多模式离子推力器宽功率范围35个工作点下最佳流率设计。在设计的工作流率下,放电电压小于30V,阴极和中和器均工作在点状模式,实测推力为9.6mN~185.2mN、比冲为1332s~3568s、功率为258W~4761W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号