首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of using outboard horizontal stabilizers (OHS) to reduce aircraft drag, and hence improve fuel economy, was investigated historically, experimentally and theoretically. The feasibility of OHS configurations on the basis of the structural stress levels expected was also studied. The findings of the work showed that from simple, low Reynolds number, wind-tunnel tests, at a wing-chord-based Reynolds number of approximately 6×104 and also from theoretical analyses for a higher Reynolds number of 9×106, lift/drag (L/D) value increases in the region of 40–50% for wing and tail surfaces can be expected relative to corresponding values for conventional aircraft. When account is taken of fuselage and tail-support boom drag, the expected overall L/D increase is in the region of 30–35%. The analytical stress-level work showed that contrary to what, on a first thought basis, might be expected, there were no major stress problems. Flight tests at the University of Calgary, and by others elsewhere, employing radio-controlled, powered, model aircraft (i.e. UAVs) showed that aircraft of the OHS type were easily controlled in flight and were stable. An examination was made of additional areas that may contribute yet further to the development of the OHS concept.  相似文献   

2.
Hot white dwarfs are objects that copiously emit in the Extreme Ultraviolet and soft X-ray range. They are the brightest sources seen in the Low Energy Telescope of EXOSAT, with countrates up to 25 cnts/s. in contrast to their optical and UV spectrum the total flux and spectral distribution at soft X-ray energies are highly sensitive to the effective temperature, structure and elemental composition of the dwarf's atmosphere. The imaging soft X-ray experiments onboard EXOSAT cover with large sensitivity the spectral region where the peak of emission of hot white dwarfs is expected to occur.I here review some of the (preliminary) results obtained so far with broadband X-ray photometry on a dozen or so white dwarfs, and some of the high-resolution spectra obtained for three white dwarfs with the grating spectrometers.  相似文献   

3.
4.
The synodic recurrence of the Mt. Wilson plage index (MPSI) and the Calgary cosmic ray (CR) intensity is investigated, using the wavelet power spectra in the range of 18–38 days, during the last three solar cycles. The unique temporal coincidence between the quasi–synodic MPSI and the CR periods is detected in 1978–1982 (the 21st solar cycle). In the 22nd cycle there is a very strong MPSI synodic recurrence, from 1989.5 to 1990.5, but it is absent in the CR data. In 1992.5–1993.5 the MPSI and CR recurrence phenomenon is in good accordance with the solar wind speed and cosmic ray modulation as measured during the first Ulysses passage around the Sun. The Gnevyshev gap is present in the 27-day recurrence of CR, in agreement with Kudela et al. (1999). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity’s 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin’s angular range of 5° to 50° 2θ with <0.35° 2θ resolution is sufficient to identify and quantify virtually all minerals. CheMin’s XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co?Kα from Co?Kβ and Fe?Kα photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar? or Kapton? windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.  相似文献   

6.
Results of the wavelet power spectrum (WPS) analysis(which covers the 1969–1998 years) obtained using the daily data of the following parameters: (i) the Mt. Wilson Magnetic Plage Strength index (MPSI), (ii) the solar LDE-type flare index (LDE-FI) and (iii) the Calgary cosmic-ray (CR) intensity, are reported for periods ranging between 64 and 1024 days. The temporal distribution of the WPS during the last three solar activity cycles is extremely discontinuous. A clear resemblance between the CR and LDE-FI WPS is obtained only for the 22nd solar activity cycle. Nevertheless, the CR multiperiod peak, observed in 1982, can well be identified with the WPS peaks obtained in both solar parameters under consideration. In the 21st cycle, we found significant the MPSI periods around 850–880 days (2.3–2.4 yr), while such periods are present in the LDE-FI data of the 22nd cycle. In the CR data we discerned a net periodicity around 650 days (1.7 yr). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We present the first results of an EXOSAT observation of the low-mass X-ray burster 4U1735-44. The ME data show low-amplitude variations in the persistent flux including two 5% dips separated by 4 hours. The structure of the single observed burst is briefly described. Five hours of simultaneous B-band photometry were obtained at SAAO with 12 minute time resolution; a strong anti-correlation is shown to exist between the X-ray and optical flux, with a high level of significance. A model for this behaviour is suggested, based on reprocessing of the X-ray flux in a corona or stellar wind.  相似文献   

8.
The NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) project is intended to investigate magnetospheric substorm phenomena, which are the manifestations of a basic instability of the magnetosphere and a dominant mechanism of plasma transport and explosive energy release. The major controversy in substorm science is the uncertainty as to whether the instability is initiated near the Earth, or in the more distant >20 Re magnetic tail. THEMIS will discriminate between the two possibilities by using five in-situ satellites and ground-based all-sky imagers and magnetometers, and inferring the propagation direction by timing the observation of the substorm initiation at multiple locations in the magnetosphere. An array of stations, consisting of 20 all-sky imagers (ASIs) and 30-plus magnetometers, has been developed and deployed in the North American continent, from Alaska to Labrador, for the broad coverage of the nightside magnetosphere. Each ground-based observatory (GBO) contains a white light imager that takes auroral images at a 3-second repetition rate (“cadence”) and a magnetometer that records the 3 axis variation of the magnetic field at 2 Hz frequency. The stations return compressed images, “thumbnails,” to two central databases: one located at UC Berkeley and the other at the University of Calgary, Canada. The full images are recorded at each station on hard drives, and these devices are physically returned to the two data centers for data copying. All data are made available for public use by scientists in “browse products,” accessible by using internet browsers or in the form of downloadable CDF data files (the “browse products” are described in detail in a later section). Twenty all-sky imager stations are installed and running at the time of this publication. An example of a substorm was observed on the 23rd of December 2006, and from the THEMIS GBO data, we found that the substorm onset brightening of the equatorward arc was a gradual process (>27 seconds), with minimal morphology changes until the arc breaks up. The breakup was timed to the nearest frame (<3 s) and located to the nearest latitude degree at about ±3oE in longitude. The data also showed that a similar breakup occurred in Alaska ~10 minutes later, highlighting the need for an array to distinguish prime onset.  相似文献   

9.
10.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   

11.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes.  相似文献   

12.
High-energy X-rays and ??-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.  相似文献   

13.
The strongest X-ray point source, LHG 83, discovered in the EINSTEIN survey of the LMC and not being associated with a nearby coronal type stellar emitter or background AGN is identified with a faint blue variable object. Spectrophotometry reveals low mass X-ray binary characteristics at a mean velocity consistent with LMC membership. The He II 4686 emission exhibits a unique blue shifted component suggesting outflow velocities of several thousand km/s. Optical brightness changes by 0.3 mag in less than one hour are likely to be intrinsic to the source rather than induced by orbital motion. The low X-ray to optical flux ratio is probably due to the fact that the central X-ray source is blocked from direct view by the accretion disk.Based on observations obtained at ESO, La Silla, Chile  相似文献   

14.
We review X-ray plasma diagnostics based on the line ratios of He-like ions. Triplet/singlet line intensities can be used to determine electronic temperature and density, and were first developed for the study of the solar corona. Since the launches of the X-ray satellites Chandra and XMM-Newton, these diagnostics have been extended and used (from C?v to Si?xiii) for a wide variety of astrophysical plasmas such as stellar coronae, supernova remnants, solar system objects, active galactic nuclei, and X-ray binaries. Moreover, the intensities of He-like ions can be used to determine the ionization process(es) at work, as well as the distance between the X-ray plasma and the UV emission source for example in hot stars. In the near future thanks to the next generation of X-ray satellites (e.g., Astro-H and IXO), higher-Z He-like lines (e.g., iron) will be resolved, allowing plasmas with higher temperatures and densities to be probed. Moreover, the so-called satellite lines that are formed closed to parent He-like lines, will provide additional valuable diagnostics to determine electronic temperature, ionic fraction, departure from ionization equilibrium and/or from Maxwellian electron distribution.  相似文献   

15.
The Broad-Band X-Ray Telescope (BBXRT) has been designed to perform high sensitivity, moderate resolution spectrophototnetry of X-ray sources in the 0.3–12 keV band from the Shuttle. It consists of a coaligned pair of high throughput, conical X-ray imaging mirrors, with a cryogenically-cooled, multiple element, Si(Li) spectrometer at the focus of each. On axis, BBXRT will have an effective area of 580 cm2 at 2 keV and 250 cm2 at 7 keV, and a spectral resolution of 110 eV at 2 keV and 150 eV at 7 keV. A 104 s observation with BBXRT will allow a determination of the continuum spectral shape for sources near the Einstein deep survey limit.  相似文献   

16.
Designed primarily to study solar activity, Yohkoh includes an X-ray telescope that obtains full-sun coronal images which show a range of features. Coronal X-ray emission-exclusive of flares, is notable for its variability even in the largest structures. A mass ejection event is related to magnetic field reconnection. Such events exhibit both accelerated and decelerated behaviour. Coronal hole temperatures are estimated from the filter ratio method. A plasma component at around 2.106 K is identified. X-ray emission is detected from the South polar coronal hole. A preliminary comparison of Spartan coronagraph images with Yohkoh data suggests that polar plumes or rays are not connected to bright points.  相似文献   

17.
We review results of correlated IR, optical and X-ray observations of GX 339-4 made from March 1981 through May 1984. In the soft X-ray state, the object does not show outstanding optical and X-ray variability. Night-to-night smooth optical variations of 0.3 magnitudes were however present during one observing run. In contrast, the hard X-ray state is characterised by strong erratic optical and X-ray fluctuations on time scales from 20 milliseconds to seconds, as well as 7 to 20 second quasi-periodic oscillations. The optical counterpart appears much redder in the IR during the hard state. Particular attention is drawn to the hard to soft X-ray transition which occured in June 1981. The shape of the IR to X-ray energy distribution is discussed. The unusual features of this black hole candidate are examined in the framework of the current theories of accretion.Based partly on observations obtained at the European Southern Observatory, La Silla, Chile.  相似文献   

18.
During a coordinated observations of 2S1636-536 with EXOSAT, Tenma and the 1.4 metre Danish telescope at La Silla, a single burst was detected at all three observatories. The burst was bright with a peak flux of 6 × 10-8 ergs/cm 2 /s and rapid expansion of the blackbody radius. EXOSAT and Tenma agree closely in the values of blackbody radius, temperature and flux which are very similar to the three bursts recently reported by Tenma which appear to reach the Eddington flux limit at their peak. Preliminary analysis of the X-ray and optical timing data reveal that this burst is unusual in having a sharp leading edge in both X-ray and optical data and a very short X-ray-optical delay compared with those previously observed. If confirmed, this result puts significant restraints on the location of the optical reprocessing site.  相似文献   

19.
Nb-10Si合金室温断裂韧性研究   总被引:2,自引:1,他引:1  
利用真空电弧熔炼制备了处于亚共晶区的Nb-10Si-xMo(x=5,15)复合材料,采用扫描电子显微镜(SEM)和X射线衍射(XRD)分析了在1200℃退火100h后复合材料的微观组织形貌、相组成和断口形貌,并测定了Nb-10Si-Mo复合材料的显微硬度。用单边切口悬臂梁法(SENB)研究了加入合金元素后复合材料室温韧性的变化。深入分析了合金元素对材料韧性相变形行为和复合材料室温断裂韧性的影响。  相似文献   

20.
Much experience has been gathered over the past two decades in the building of grazing incidence X-ray telescopes. Based on the performance data of the best X-ray optics, the requirements for building an EUV-telescope with sub-arcsecond angular resolution are estimated.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号