共查询到20条相似文献,搜索用时 15 毫秒
1.
Goldsten J. O. McNutt R. L. Gold R. E. Gary S. A. Fiore E. Schneider S. E. Hayes J. R. Trombka J. I. Floyd S. R. Boynton W. V. Bailey S. Brückner J. Squyres S. W. Evans L. G. Clark P. E. Starr R. 《Space Science Reviews》1997,82(1-2):169-216
An X-ray/gamma-ray spectrometer has been developed as part of a rendezvous mission with the near-Earth asteroid, 433 Eros, in an effort to answer fundamental questions about the nature and origin of asteroids and comets. During about 10 months of orbital operations commencing in early 1999, the X-ray/Gamma-ray Spectrometer will develop global maps of the elemental composition of the surface of Eros. The instrument remotely senses characteristic X-ray and gamma-ray emissions to determine composition. Solar excited X-ray fluorescence in the 1 to 10 keV range will be used to measure the surface abundances of Mg, Al, Si, Ca, Ti, and Fe with spatial resolutions down to 2 km. Gamma-ray emissions in the 0.1 to 10 MeV range will be used to measure cosmic-ray excited elements O, Si, Fe, H and naturally radioactive elements K, Th, U to surface depths on the order of 10 cm. The X-ray spectrometer consists of three gas-filled proportional counters with a collimated field of view of 5° and an energy resolution of 850 eV @ 5.9 keV. Two sunward looking X-ray detectors monitor the incident solar flux, one of which is the first flight of a new, miniature solid-state detector which achieves 600 eV resolution @ 5.9 keV. The gamma-ray spectrometer consists of a NaI(Tl) scintillator situated within a Bismuth Germanate (BGO) cup, which provides both active and passive shielding to confine the field of view and eliminate the need for a massive and costly boom. New coincidence techniques enable recovery of single and double escape events in the central detector. The NaI(Tl) and BGO detectors achieve energy resolutions of 8.7% and 14%, respectively @ 0.662 MeV. A data processing unit based on an RTX2010 microprocessor provides the spacecraft interface and produces 256-channel spectra for X-ray detectors and 1024-channel spectra for the raw, coincident, and anti-coincident gamma-ray modes. This paper presents a detailed overview of the X-ray/Gamma-ray Spectrometer and describes the science objectives, measurement objectives, instrument design, and shows some results from early in-flight data. 相似文献
2.
The Near Earth Asteroid Rendezvous (NEAR) mission launched successfully on February 17, 1996 aboard a Delta II-7925. NEAR will be the first mission to orbit an asteroid and will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. It will orbit the unusually large near-Earth asteroid 433 Eros for about one year, at a minimum altitude of about 15 km from the surface. NEAR will also make the first reconnaissance of a C-type asteroid during its flyby of the unusual main belt asteroid 253 Mathilde. The NEAR instrument payload is: a multispectral imager (MSI), a near infrared spectrometer (NIS), an X-ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science investigation (RS) uses the coherent X-band transponder. NEAR will improve our understanding of planetary formation processes in the early solar system and clarify the relationships between asteroids and meteorites. The Mathilde flyby will occur on June 27, 1997, and the Eros rendezvous will take place during February 1999 through February 2000. 相似文献
3.
Hawkins S. Edward Darlington E. Hugo Murchie Scott L. Peacock Keith Harris Terry J. Hersman Christopher B. Elko Michael J. Prendergast Daniel T. Ballard Benjamin W. Gold Robert E. Veverka Joseph Robinson Mark S. 《Space Science Reviews》1997,82(1-2):31-100
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration. 相似文献
4.
5.
R. A. Masterson M. Chodas L. Bayley B. Allen J. Hong P. Biswas C. McMenamin K. Stout E. Bokhour H. Bralower D. Carte S. Chen M. Jones S. Kissel F. Schmidt M. Smith G. Sondecker L. F. Lim D. S. Lauretta J. E. Grindlay R. P. Binzel 《Space Science Reviews》2018,214(1):48
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications. 相似文献
6.
Cole T. D. Boies M. T. El-Dinary A. S. Cheng A. Zuber M. T. Smith D. E. 《Space Science Reviews》1997,82(1-2):217-253
In 1999 after a 3-year transit, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft will enter a low-altitude orbit around the asteroid, 433 Eros. Onboard the spacecraft, five facility instruments will operate continuously during the planned one-year orbit at Eros. One of these instruments, the NEAR Laser Rangefinder (NLR), will provide sufficiently high resolution and accurate topographical profiles that when combined with gravity estimates will result with quantitative insight into the internal structure, rotational dynamics, and evolution of Eros. Developed at the Applied Physics Laboratory (APL), the NLR instrument is a direct-detection laser radar using a bistatic arrangement. The transmitter is a gallium arsenide (GaAs) diode-pumped Cr:Nd:YAG (1.064-µm) laser and the separate receiver uses an extended infrared performance avalanche-photodiode (APD) detector with 7.62-cm clear aperture Dall–Kirkham telescope. The lithium-niobate (LiNbO3) Q-switched transmitter emits 15-ns pulses at 15.3 mJ pulse-1, permitting reliable NLR operation beyond the required 50-km altitude. With orbital velocity of 5 m s-1 and a sampling rate of 1 Hz, the NLR spot size provides high spatial sampling of Eros along the orbital direction. Cross-track sampling, determined by the specific orbital geometry with Eros, defines the resolution of the global topographic model; this spacing is expected to be <500 m on the asteroid's surface. Combining the various sources of range errors results with an overall range accuracy of 6 m with respect to Eros' center-of-mass. The NLR instrument design, perfomance, and validation testing is decribed. In addition, data derived from the NLR are discussed. Using altimetry data from the NLR, we expect to estimate the volume of 433 Eros to 0.01% and its mass to 0.0001% accuracies; significantly greater accuracies than ever possible before NEAR. 相似文献
7.
8.
针对交会对接任务目标飞行器与追踪器轨道运行特性,综合考虑规避策略计算方法与工程实际相结合的问题,提出高度规避、时间规避以及与正常轨控相结合的碰撞规避策略计算方法等三种空间目标碰撞规避策略计算方法.高度规避计算方法采用了Lambert飞行原理,用简化二体开普勒模型取代高精度轨道预报方法,迭代求解规避机动速度增量,实现了通过约束过交点与目标径向距离差得到速度增量的最优解;时间规避计算方法通过轨道周期与速度增量的关系,实现了通过约束过交点与目标的时间差得到速度增量的最优解;与正常轨控相结合的碰撞规避策略计算方法,在正常控制考虑冗余控制量的基础上,对控制策略的控制开始时间或沿迹方向的速度增量进行较小的修正,使两者通过碰撞点的时刻或径向距离错开,达到碰撞规避的目的,该方法不仅可以节省燃料、而且对任务的影响较小.通过对三种空间目标碰撞规避策略计算方法仿真分析结果表明,完全适用于交会对接任务,可为我国载人航天任务飞行安全提供技术保障. 相似文献
9.
A Coradini F. Capaccioni P. Drossart G. Arnold E. Ammannito F. Angrilli A. Barucci G. Bellucci J. Benkhoff G. Bianchini J. P. Bibring M. Blecka D. Bockelee-Morvan M. T. Capria R. Carlson U. Carsenty P. Cerroni L. Colangeli M. Combes M. Combi J. Crovisier M. C. Desanctis E. T. Encrenaz S. Erard C. Federico G. Filacchione U. Fink S. Fonti V. Formisano W. H. Ip R. Jaumann E. Kuehrt Y. Langevin G. Magni T. Mccord V. Mennella S. Mottola G. Neukum P. Palumbo G. Piccioni H. Rauer B. Saggin B. Schmitt D. Tiphene G. Tozzi 《Space Science Reviews》2007,128(1-4):529-559
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe
for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as
a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus
Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully
observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars
in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison
– using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative
of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship
with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed
to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the
comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will
be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload
of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral
bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification
of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent
of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied. 相似文献
10.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists
of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet
and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating,
Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle
ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure
altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability
and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph
equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array
(300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface
reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical
composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or
smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed
design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital
operations around Mercury. 相似文献
11.
12.
13.
14.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献
15.
交会对接任务天基双目标测控通信设计 总被引:3,自引:0,他引:3
针对交会对接任务对测控通信提出的高覆盖率和双目标测控等需求的问题,分析2颗中继卫星能够提供的覆盖率,设计双目标测控工作模式以及天地协同机制,计算中继链路的性能,分析表明,天基测控可提供约72%的测控覆盖率,能够支持双目标测控,链路余量满足要求;统计了任务中关键段落的测控通信工作情况,分析结果和实际任务情况验证了天基测控在交会对接任务测控通信中的重要作用;最后提出后续任务改进和完善的建议。 相似文献
16.
17.
D. C. Reuter A. A. Simon J. Hair A. Lunsford S. Manthripragada V. Bly B. Bos C. Brambora E. Caldwell G. Casto Z. Dolch P. Finneran D. Jennings M. Jhabvala E. Matson M. McLelland W. Roher T. Sullivan E. Weigle Y. Wen D. Wilson D. S. Lauretta 《Space Science Reviews》2018,214(2):54
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000–2300 cm?1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89–1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid’s surface. 相似文献
18.
F. M. Flasar V. G. Kunde M. M. Abbas R. K. Achterberg P. Ade A. Barucci B. B’ezard G. L. Bjoraker J. C. Brasunas S. Calcutt R. Carlson C. J. C’esarsky B. J. Conrath A. Coradini R. Courtin A. Coustenis S. Edberg S. Edgington C. Ferrari T. Fouchet D. Gautier P. J. Gierasch K. Grossman P. Irwin D. E. Jennings E. Lellouch A. A. Mamoutkine A. Marten J. P. Meyer C. A. Nixon G. S. Orton T. C. Owen J. C. Pearl R. Prang’e F. Raulin P. L. Read P. N. Romani R. E. Samuelson M. E. Segura M. R. SHOWALTER A. A. Simon-Miller M. D. Smith J. R. Spencer L. J. Spilker F. W. Taylor 《Space Science Reviews》2004,115(1-4):169-297
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date. 相似文献
19.
本文通过在硅衬底上用MOCVD方法生长的砷化镓外延薄膜的变激发强度的近红外光致发光,研究了在液氮温度下峰值为1.13与1.04eV两个发光带的发光特性。 相似文献