首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

2.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

3.
We discuss the new information that the light elements, particularly Be, have brought to cosmic-ray studies, specifically to the issue of the origin of the seed material of the cosmic rays. The primary nature of the Be evolution strongly suggests that supernova ejecta are the sources of this material. We discuss the superbubble models that emerged as the most likely site for the acceleration of supernova ejecta, and we review the arguments that support the model in which the present epoch cosmic rays have the same origin as those that produce the light elements throughout the evolutionary history of the Galaxy. These arguments include the facts that the bulk of the Galactic supernovae are confined within the interiors of superbubbles, where their ejecta could dominate the metallicity, and that high velocity grains, which condense out of the cooling and expanding ejecta, serve as the injection source for shock acceleration, via sputtering of grain material and scattering of volatile gas atoms. We also review the evolutionary calculations that show that a secondary origin for the evolution of Be as a function of the O abundance is energetically untenable, and unnecessary if cosmic-ray transport is properly taken into account.  相似文献   

4.
The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay -ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy -rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.  相似文献   

5.
The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.  相似文献   

6.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

7.
In the following we describe recent progress in our understanding of the origin of cosmic rays. We propose that cosmic rays originate mainly in three sites, a) normal supernova explosions into the interstellar medium, b) supernova explosions into stellar winds, and c) hot spots of powerful radio galaxies. The proposal depends on an assumption about the scaling of the turbulent diffusive transport in cosmic ray mediated shock regions; the proposal also uses a specific model for the interstellar transport of cosmic rays. The model has been investigated in some detail and compared to i) the radio data of OB stars, Wolf Rayet stars, radio supernovae, radio supernova remnants, Gamma-ray line and continuum emission from starforming regions, and the cosmic ray electron spectrum, ii) the Akeno air shower data over the particle energy range from 10 TeV to EeV, and iii) the Akeno and Fly's Eye air shower data from 0.1 EeV to above 100 EeV.  相似文献   

8.
The main features of cosmic-ray source models and acceleration processes are reviewed, with special emphasis on the possible observational tests, through both composition analysis and multi-wavelength studies of supernova remnants. Non-linear effects in the context of supernova-induced diffusive shock acceleration are discussed, as well as collective acceleration effects induced by multiple supernova explosions inside superbubbles.  相似文献   

9.
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.  相似文献   

10.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

11.
Computer modeling of test particle acceleration at oblique shocks   总被引:1,自引:0,他引:1  
We review the basic techniques and results of numerical codes used to model the acceleration of charged particles at oblique, fast-mode, collisionless shocks. The emphasis is upon models in which accelerated particles (ions) are treated as test particles, and particle dynamics is calculated by numerically integrating along exact phase-space orbits. We first review the case where ions are sufficiently energetic so that the shock can be approximated by a planar discontinuity, and where the electromagnetic fields on both sides of the shock are defined at the outset of each computer run. When the fields are uniform and static, particles are accelerated by the scatter-free drift acceleration process at a single shock encounter. We review the characteristics of scatter-free drift acceleration by considering how an incident particle distribution is modified by interacting with a shock. Next we discuss drift acceleration when magnetic fluctuations are introduced on both sides of the shock, and compare these results with those obtained under scatter-free conditions. We describe the modeling of multiple shock encounters, discuss specific applications, and compare the model predictions with theory. Finally, we review some recent numerical simulations that illustrate the importance of shock structure to both the ion injection process and to the acceleration of ions to high energies at quasi-perpendicular shocks.  相似文献   

12.
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component (Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays appears to be viable.  相似文献   

13.
We discuss pickup ion acceleration and transport near the solar wind termination shock from the perspective of their spectral, spatial, and pitch-angle distributions. Our study is performed in the framework of a recently developed anisotropic transport model based on a Legendre polynomial expansion technique. Voyager 1 LECP angular distributions of 1 MeV protons, represented in the form of an expansion in spherical harmonics in the frame aligned with the measured interplanetary magnetic field, are used as benchmarks for our theory. We find the observed distributions consistent with our model predictions for particle acceleration and reflection at a highly oblique shock wave. It is shown that first-order (field aligned) anisotropy is a measure of shock obliquity while the second-order (transverse) anisotropy reflects the energy dependence of the particle scattering mean free path. We also discuss the role of enhanced scattering and momentum diffusion on the spectral properties of energetic charged particles.  相似文献   

14.
The magnetic energy released inside an active region is closely related to its formation and evolution. Following the evolution of a collection of flux tubes inside the convection zone and above the photosphere we can show that many nonlinear structures (current sheets, shock waves, double layers etc.) are formed. We propose in this review that coronal heating, flares and particle acceleration are due to the interaction of the plasma with these nonlinear structures. Approaching active regions as a driven complex dynamical system we can show that several coherent ensembles of the nonlinear structures will appear spontaneously. The statistical analysis of these structures is a major problem in solar physics. We can also show that many observed large scale structures are the result of the convolution of non-observable fragmentation in the energy release process.  相似文献   

15.
Gamma-ray lines arise from radioactivities produced in nucleosynthesis sites, and from deexcitation of nuclei which have been activated through energetic particle collisions. Since the bulk of nucleosynthesis activity relates to activities inside massive stars, both these processes are related to the likely sources of cosmic rays: Supernova remnants show radioactivity afterglows at time scales which bracket their likely phases of relevance as CR acceleration sites; 26Al radioactivity may trace regions of intense wind interactions from groups of massive stars, and also encode information about the possible injection of matter into CR acceleration environments through interstellar dust grains. The status of -ray line measurements after the Compton Observatory mission is presented, with models and interpretations of current results, and the prospects of upcoming measurements.  相似文献   

16.
The paper gives a summary of the situation mid-1993 of theory and observations regarding massive stars. I describe: stellar mass loss and its implications, pre-main-sequence evolution, the main sequence, problems of atmospheric instability, Luminous Blue Supergiants, Yellow Hypergiants, Wolf-Rayet stars and supernovae.  相似文献   

17.
We present a photometric investigation, using the VBLUW system, of the stellar content of Orion OB1. Physical parameters (logg, logT eff) for the stars are derived with the aid of model atmospheres. From these, visual extinctions, absolute magnitudes and distance moduli are derived. The distance moduli are used to determine membership for the stars in each of the subgroups and distances to the subgroups are calculated. The ages of the subgroups are derived through isochrone fitting and the IMF is derived for each subgroup. The energy deposited into the ISM through stellar winds and supernovae is calculated and compared to observed large scale features in the ISM around Orion OB1.  相似文献   

18.
In this review we discuss some observational aspects and theoretical models of astrophysical collisionless shocks in partly ionized plasma with the presence of non-thermal components. A specific feature of fast strong collisionless shocks is their ability to accelerate energetic particles that can modify the shock upstream flow and form the shock precursors. We discuss the effects of energetic particle acceleration and associated magnetic field amplification and decay in the extended shock precursors on the line and continuum multi-wavelength emission spectra of the shocks. Both Balmer-type and radiative astrophysical shocks are discussed in connection to supernova remnants interacting with partially neutral clouds. Quantitative models described in the review predict a number of observable line-like emission features that can be used to reveal the physical state of the matter in the shock precursors and the character of nonthermal processes in the shocks. Implications of recent progress of gamma-ray observations of supernova remnants in molecular clouds are highlighted.  相似文献   

19.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

20.
We review the evidence for electron acceleration in the heliosphere putting emphasis on the acceleration processes. There are essentially four classes of such processes: shock acceleration, reconnection, wave particle interaction, and direct acceleration by electric fields. We believe that only shock and electric field acceleration can in principle accelerate electrons to very high energies. The shocks known in the heliosphere are coronal shocks, traveling interplanetary shocks, CME shocks related to solar type II radio bursts, planetary bow shocks, and the termination shock of the heliosphere. Even in shocks the acceleration of electrons requires the action of wave particle resonances of which beam driven whistlers are the most probable. Other mechanisms of acceleration make use of current driven instabilities which lead to electron and ion hole formation. In reconnection acceleration is in the current sheet itself where the particles perform Speiser orbits. Otherwise, acceleration takes place in the slow shocks which are generated in the reconnection process and emanate from the diffusion region in the Petschek reconnection model and its variants. Electric field acceleration is found in the auroral zones of the planetary magnetospheres and may also exist on the sun and other stars including neutron stars. The electric potentials are caused by field aligned currents and are concentrated in narrow double layers which physically are phase space holes in the ion and electron distributions. Many of them add up to a large scale electric field in which the electrons may be impulsively accelerated to high energies and heated to large temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号