共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael Loewenstein David S. Davis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):1972-1974
We discuss the elemental composition in the hot ISM of elliptical galaxies derived from new and recent X-ray spectral analysis in the context of new phenomenological models of their chemical evolution. Star formation histories, the IMF, the astrophysics of supernovae, and the nature of galactic winds impact the metal content and relative abundances in the hot ISM. We evaluate how X-ray spectroscopy may be utilized to deconstruct how elliptical galaxies, and the stellar populations that compose them, form and evolve, with an emphasis on present and future high resolution spectroscopic analysis. 相似文献
2.
T. Kallman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2673-2677
In this paper I will review the motivation for measuring polarization in the X-ray band from astrophysical sources. Emission models designed to reproduce X-ray spectra can be tested using polarization, and polarization detected in other wavelength bands makes clear predictions as to the X-ray polarization. Polarization is a powerful tool to infer geometrical properties of sources which are too small to be spatially resolved. At the same time, there has been recent progress in instrumentation which is likely to allow searches for X-ray polarization at levels significantly below what was possible for early detectors. This paper will review the history of X-ray polarimetry, discuss some experimental techniques and the scientific problems which can be addressed by future experiments. 相似文献
3.
T. G. Tsuru T. Tanimori A. Bamba K. Imanishi K. Koyama H. Kubo H. Matsumoto K. Miuchi M. Nagayoshi R. Orito A. Takada S. Takagi M. Tsujimoto M. Ueno H. Tsunemi K. Hayashida E. Miyata 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2688-2690
We propose a new type of wide band X-ray imaging spectrometer as a focal plane detector of the super mirror onboard on future X-ray missions including post Astro-E2. This camera is realized by the hybrid of back illumination CCDs and a back supportless CCD for 0.05–10 keV band, and a Micro Pixel Gas Chamber detecting X-rays at 10–80 keV. 相似文献
4.
J.S. Kaastra R. Lieu T. Tamura F.B.S. Paerels J.W. den Herder 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2504-2508
We discuss the detection of soft excess X-ray emission in a sample of 19 clusters of galaxies observed by XMM-Newton. In 6/19 clusters evidence for a soft X-ray excess is found. Four of these clusters show soft X-ray and O VII line emission from gas with a temperature of 0.2 keV. The centroid of this oxygen line is consistent with the redshift of the cluster. The intensity and spatial extend of the soft excess agrees with previous PSPC measurements. These observations are interpreted as emission from warm-hot intergalactic medium filaments, with density enhancements near the cluster centers, consistent with theoretical predictions. In the other two soft excess clusters a non-thermal origin is consistent with the data. 相似文献
5.
H. Katayama K. Hayashida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2519-2524
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 < < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos. 相似文献
6.
K.O. Mason G. Branduardi-Raymont P.M. Ogle M.J. Page E.M. Puchnarewicz N.J. Salvi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2610-2613
Long (>100 ks) observations of the bright Seyfert galaxies Mrk 766 and NGC 4051 have been obtained using XMM-Newton. The RGS 5–38 Å spectra reveal evidence of broad features. These can be modelled with relativistic emission lines coming from the immediate vicinity of a massive rotating black hole. Lines of OVIII, NVII and CVI are required to reproduce the spectrum of Mrk 766, whereas the spectrum of NGC 4051 can be modelled using a single, even broader OVIII line. Both Seyferts also exhibit broad iron line emission in the 2–8 keV range, and the data available thus far suggest that the strength of the low-energy emission lines and the strength of the iron line may be correlated. 相似文献
7.
M. Kalinkov K. Stavrev I. Kuneva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,3(10-12)
An attempt is made to compare optical properties of Abell clusters with X-ray sources. 相似文献
8.
Ken Ebisawa Toshihiro Kawaguchi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2862-2866
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs. 相似文献
9.
A. N. Parmar G. Hasinger M. Arnaud X. Barcons D. Barret H. Bhringer A. Blanchard M. Cappi A. Comastri T. Courvoisier A. C. Fabian F. Fiore I. Georgantopoulos P. Grandi R. Griffiths A. Hornstrup N. Kawai K. Koyama K. Makishima G. Malaguti K. O. Mason C. Motch M. Mendez T. Ohashi F. Paerels L. Piro T. Ponman J. Schmitt S. Sciortino G. Trinchieri M. van der Klis M. Ward 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2623
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. 相似文献
10.
Y. Haba Y. Terashima H. Kunieda K. Ohsuga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):174-179
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M⊙. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account. 相似文献
11.
J.H. Swank 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2959-2963
The prime scientific objectives of the Rossi X-ray Timing Explorer (RXTE) were the study of astrophysical compact objects: black holes (galactic and extragalactic), many types of neutron stars, and accreting white dwarfs. RXTE was successful in achieving its original observing objectives of large area and high time resolution observations with broadband (2–200 keV) spectra, scheduled flexibly enough to enable observations of targets of opportunity on any timescale greater than a few hours. These capabilities enabled qualitatively new discoveries about dynamical timescale phenomena related to neutron stars and black holes, phenomena which probe basic physics in the most extreme environments of gravity, density, and magnetic fields. RXTE has extended its lifetime by applying the proportional counter area selectively and maintains schedule flexibility by making use of the distribution of targets around the sky. Proposed future observations emphasize opportunity to discover and study additional millisecond pulsars, pursue the high frequency quasi-periodic oscillations in black hole transients, and connect high frequency phenomena with longer-term characteristics. RXTE will continue to strongly support, for both galactic and extragalactic targets, combining RXTE observations with other wavelengths (from IR to TeV) or with other capabilities, such as high spectral resolution. 相似文献
12.
H. Raichur B. Paul S. Naik N. Bhatt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2785-2787
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538−52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution.
Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA. 相似文献
13.
S. Pellegrini L. Ciotti J.P. Ostriker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The centers of elliptical galaxies host supermassive black holes that significantly affect the surrounding interstellar medium through feedback resulting from the accretion process. The evolution of this gas and of the nuclear emission during the galaxies’ lifetime has been studied recently with high-resolution hydrodynamical simulations. These included gas cooling and heating specific for an average AGN spectral energy distribution, a radiative efficiency declining at low mass accretion rates, and mechanical coupling between the hot gas and AGN winds. Here, we present a short summary of the observational properties resulting from the simulations, focussing on (1) the nuclear luminosity; (2) the global luminosity and temperature of the hot gas; (3) its temperature profile and X-ray brightness profile. These properties are compared with those of galaxies of the local universe, pointing out the successes of the adopted feedback and the needs for new input in the simulations. 相似文献
14.
Florence Durret Gastão B. Lima Neto 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have analyzed XMM-Newton archive data for five clusters of galaxies (redshifts 0.223–0.313) covering a wide range of dynamical states, from relaxed objects to clusters undergoing several mergers. We present here temperature maps of the X-ray gas together with a preliminary interpretation of the formation history of these clusters. 相似文献
15.
Hong Li Xiangyun Long Hua Feng Qiong Wu Jiahui Huang Weichun Jiang Massimo Minuti Dongxin Yang Saverio Citraro Hikmat Nasimi Jiandong Yu Ge Jin Ming Zeng Peng An Luca Baldini Ronaldo Bellazzini Alessandro Brez Luca Latronico Enrico Costa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):708-714
PolarLight is a compact soft X-ray polarimeter onboard a CubeSat, which was launched into a low-Earth orbit on October 29, 2018. In March 2019, PolarLight started full operation, and since then, regular observations with the Crab nebula, Sco X-1, and background regions have been conducted. Here we report the operation, calibration, and performance of PolarLight in the orbit. Based on these, we discuss how one can run a low-cost, shared CubeSat for space astronomy, and how CubeSats can play a role in modern space astronomy for technical demonstration, science observations, and student training. 相似文献
16.
M. Giard E. Pointecouteau L. Montier E. Simmat 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(9):1047-1050
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open. 相似文献
17.
T. Okajima Y. Tawara Y. Ogasaka K. Tamura A. Furuzawa K. Yamashita H. Kunieda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2682-2687
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions. 相似文献
18.
S.I. Bartsev V.V. Mezhevikin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
Searching for extraterrestrial life attracts more and more attention. However this searching hardly can be effective without sufficiently universal concept of life origin, which incidentally tackles a problem of origin of life on the Earth. A concept of initial stages of life origin is stated in the paper. The concept eliminates key difficulties in the problem of life origin, and allows experimental verification of it. According to the concept the predecessor of living beings has to be sufficiently simple to provide non-zero probability of self-assembling during short (in geological or cosmic scale) time. In addition the predecessor has to be capable of autocatalysis, and further complication (evolution). A possible scenario of initial stage of life origin, which can be realized both on other planets, and inside experimental facility is considered. In the scope of the scenario a theoretical model of multivariate oligomeric autocatalyst is presented. Results of computer simulation of two versions of oligomeric autocatalytic reactions are presented. It is shown that the contribution of monomer activation reaction is essential, and in some cases autocatalysis in polymerizing reaction can be achieved without catalyzing proper monomer binding reaction. 相似文献
19.
Wei-Tou Ni 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The detection of low frequency band (100 nHz–100 mHz) and very low frequency band (300 pHz–100 nHz) gravitational waves (GWs) is important for exploration of the equation of state of dark energy and the co-evolution of massive black holes (MBHs) with galaxies. Most galaxies are believed to have a massive black hole in the galactic core. In the formation of these black holes, merging and accretion are the two main processes. Merging of massive black holes generate GWs which could be detected by space GW detectors and Pulsar Timing Arrays (PTAs) to cosmological distances. LISA (Laser-Interferometric Space Antenna) is most sensitive to the frequency band 1 mHz–100 mHz, ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is most sensitive to the frequency band 100 nHz–1 mHz and PTAs are most sensitive to the frequency band 300 pHz–100 nHz. In this paper, we discuss the sensitivities and outlooks of detection of GWs from binary massive black holes in these frequency bands with an emphasis on ASTROD-GW. The GWs generated by the inspirals, merging and subsequent ringdowns of binary black holes are standard sirens to the cosmological distance. Using GW observations, we discuss the methods for determining the equation of state of dark energy and for testing the co-evolution models of massive black holes. ASTROD-GW is an optimization of ASTROD to focus on the goal of detection of GWs. The mission orbits of the 3 spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecraft range interferometrically with one another with arm length about 260 million kilometers. With 52 times longer in arm length compared to that of LISA, the strain detection sensitivity is 52 times better toward larger wavelength. The scientific aim is focused for gravitational wave detection at low frequency. The science goals include detection of GWs from MBHs, and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of massive black holes with galaxies. 相似文献
20.
G. La Mura M. Berton S. Ciroi V. Cracco F. Di Mille P. Rafanelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding. 相似文献