首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乔立红  杨志兵 《航空学报》1994,15(10):1243-1246
 提出一种在计算机集成环境下编制工艺现程的方法,以“约束”的概念体现工艺学原则和实际生产环境信息。零件的被加工表面信息直接从集成数据库中获取。通过工艺数据库得到各被加工表面的各种可能的加工活动信息。对以这些加工活动为元素的集合施加位置关系约束,采用一定算法得到零件的多个可行工艺规程。该CAPP方法可在产品设计由粗到细的各个阶段实现,适于并行工程环境。  相似文献   

2.
The application of manufacturability analysis to the design of mechanical parts in electronic systems improves quality, performance and reliability. Typical interest areas include equipment enclosures, transducers and high-tech microwave modules. New performance levels are feasible due to improved surface quality, stability, reduction of seam widths or the use of sophisticated materials. The stepwise procedure points out attractive solutions for challenging airborne, maritime or space sensor platform environments. A thorough understanding of manufacturability judgement and knowledge about current milling, welding and coating processes is essential as well as the earliest application of the formulated principle  相似文献   

3.
李霓  布树辉  尚柏林  李永波  汤志荔  张伟伟 《航空学报》2021,42(4):524752-524752
未来飞行器正朝着多元化、无人化和智能化的方向发展,高超声速、超隐身和变体等新型飞行器不断涌现。而传统飞行器解耦分拆的设计方法越来越难以满足未来飞行器综合性能全面提升的要求,只有通过整体化设计才能充分发掘飞行器的潜能。通过分析传统飞行器设计中存在的问题,提出满足全生命周期要求的飞行器智能设计体系理念,利用知识库的构建将智能赋予飞行器平台系统设计、制造生产和运维这3个阶段,并通过数字孪生技术进行飞行器全生命周期的仿真、分析和预测,以对飞行器设计、运行等数据进行更新,使该体系形成闭环。就飞行器智能设计体系中需要的关键技术及涉及的科学问题等进行了讨论,并给出了未来发展方向以供参考。  相似文献   

4.
Successful execution of a program and full satisfaction of the customer's requirements is a challenge for any contractor. Raytheon Company responds to this challenge by following a proven program execution methodology. The methodology includes all program aspects from financial planning to engineering to validation and test. This discusses the engineering team and the role of the mechanical engineer. A radar system is ultimately an assembly of advanced electronics and software. However, the design, fabrication, assembly, integration, and test Of this complex system requires a coherent multi-disciplinary approach. Raytheon, like many contractors, chooses to assemble an integrated product team (IPT) including all engineering disciplines. Mechanical engineering is integral to satisfying performance requirements, performing preliminary and detailed design, transition of the design to manufacturing, and implementation of the hardware in the field. During definition, mechanical engineering assists fundamental architecture development, conceptual design, and requirements development which precludes issues that are sometimes ignored to the detriment of many programs. These design issues include environmental protection, structural stiffness to meet deflection requirements, cooling system capacity to properly remove dissipated heat, manufacturabilit3' to control cost, maintainability to enable repair in the field, and transportability. Recognizing and trading off these issues early greatly increases the Probability Of satisfying customer objectives. This discusses the approach Raytheon is taking to ensure an overall multi-disciplinary solution to our design challenges from the perspective of the mechanical engineer.  相似文献   

5.
旨在为国内军品研制生产过程中应用可制造性评估提供必要参考,系统分析和总结了国外开展产品设计可制造性评估工作模式、方法和流程,重点描述了与英美等国外知名企业的合作和实践过程,特别是开展同步研发工作。结果表明:在传统串行设计开发模式中,只有完成上阶段工作,才能进入下阶段的工作及交换成套信息。而在可制造性评估中由于将制造工艺要求和质量要求提前引入产品设计过程,避免了传统模式中后期意见无法贯入设计图样和设计文件现象,证明其在缩短研制周期和降低成本方面是有帮助的。有必要将可制造性评估工作在国内航空发动机产品设计-制造产业链中推广应用。  相似文献   

6.
拓扑优化与增材制造结合:一种设计与制造一体化方法   总被引:1,自引:0,他引:1  
被誉为"第三次工业革命"的增材制造技术通过材料层层累加的方式实现结构的制备,这种独特的制造方式实现了高度复杂结构的自由"生长"成形,极大地拓宽了设计"空间",为新型结构及材料的制备提供了强大的工具。制造工艺的飞速发展往往需要设计技术的快速跟进,拓扑优化方法因其不依赖初始构型及工程师经验,可获得完全意想不到的创新构型,已成为结构创新设计的重要工具。因此,将拓扑优化(先进设计技术)与增材制造(先进制造技术)融合,发展面向增材制造的创新设计技术具有广阔的前景。从面向增材制造的优质结构构型设计以及考虑增材制造工艺约束的拓扑优化设计方法两个方面,介绍了现阶段基于拓扑优化方法所建立的结构创新设计理论,并指出未来研究的趋势。  相似文献   

7.
《中国航空学报》2023,36(1):456-467
High-resolution laser additive manufacturing (LAM) significantly releases design freedom, promoting the development of topology optimization (TO) and advancing structural design methods. In order to fully take advantage of voxelated forming methods and establish the quantitative relationship between the mechanical properties of printing components and multiple process factors (laser- and process- parameters), the concurrent optimization design method based on LAM should cover the process-performance relationship. This study proposes a novel artificial intelligence-facilitated TO method for LAM to concurrently design microscale material property and macroscale structural topology of 3D components by adopting heuristic and gradient-based algorithms. The process–structure–property relationship of selective laser sintering is established by the back propagation neural network, and it is integrated into the TO algorithm for providing a systematic design scheme of structural topology and process parameter. Compared with the classical optimization method, numerical examples show that this method is able to improve the mechanical performance of the macrostructure significantly. In addition, the collaborative design method is able to be widely applied for complex functional part design and optimization, as well as case studies on artificial intelligence-facilitated product evaluation.  相似文献   

8.
自动铺丝最小间隙路径规划与复合材料锥壳结构制造   总被引:2,自引:1,他引:1  
段沐枫  秦田亮  沈裕峰  徐吉峰 《航空学报》2019,40(2):522423-522423
自动铺丝技术(AFP)是提高复合材料构件制造效率和降低其制造成本的关键技术和重要手段。铺放轨迹的设计是控制自动铺丝工艺质量的关键。对于复杂的结构形式,合理的铺丝路径对保证可制造性及铺贴质量至关重要。本文针对简化后的后机身锥壳特征结构,研究了基于固定角法、测地线法和变角度法的自动铺丝轨迹算法设计,解决了铺放复杂曲面满覆盖问题;总结对比获得了不同铺丝轨迹方法的特点和适用范围。以保证工艺性并满足结构设计铺层方向为原则,选用了带宽为6.35 mm的自动铺丝预浸料完成工艺验证件制造,并通过有限元分析评估了自动铺丝轨迹算法的合理性。结果表明:该结构宜采用测地线法铺放0°方向铺层以减少褶皱;采用固定角法铺放90°方向铺层能够保证连续铺放;采用结合预浸窄带侧弯试验结果的变角度轨迹规划方法铺放此锥类构件±45°方向铺层能够保持最小间隙。铺丝间隙使锥壳结构单层等效模量下降约30%,整体强度下降约10%。因而在结构优化设计时需考虑自动铺丝工艺对安全裕度影响的因素。  相似文献   

9.
转子结构系统界面失效分析及稳健设计方法   总被引:1,自引:0,他引:1  
针对结构非连续转子中连接界面接触状态变化引起界面力学特征改变,使转子系统动力特性不稳健的问题进行分析,并提出了一种界面接触状态的稳健设计方法。结果表明:该方法通过分析结构非连续转子系统中界面损伤失效的力学过程,对结构特征参数进行优化设计,降低界面力学特性对载荷环境的敏感度。以涡轮转子套齿连接为例进行优化设计得到,在加工装配误差所导致的应力极限情况下,最优解的接触应力水平更加远离应力约束边界,使带有连接界面的结构非连续转子系统的力学特性更加稳健,具有较好的工程应用价值。   相似文献   

10.
Electrochemical machining (ECM) is an effective and economical manufacturing method for machining hard-to-cut metal materials that are often used in the aerospace field. Cathode design is very complicated in ECM and is a core problem influencing machining accuracy, especially for complex profiles such as compressor blades in aero engines. A new cathode design method based on iterative correction of predicted profile errors in blade ECM is proposed in this paper. A math-ematical model is first built according to the ECM shaping law, and a simulation is then carried out using ANSYS software. A dynamic forming process is obtained and machining gap distributions at different stages are analyzed. Additionally, the simulation deviation between the prediction profile and model is improved by the new method through correcting the initial cathode profile. Further-more, validation experiments are conducted using cathodes designed before and after the simulation correction. Machining accuracy for the optimal cathode is improved markedly compared with that for the initial cathode. The experimental results illustrate the suitability of the new method and that it can also be applied to other complex engine components such as diffusers.  相似文献   

11.
Automated fibre placement(AFP) systems have successfully intensified the demand for high-quality composite component manufacturing in both the military and civilian fields. One of the main elements of these systems is the AFP mechanism for accomplishing individual fibre delivery,clamp/cut/restart(CCR) and the consolidation process, and it consists of several functional submechanisms presenting strong coupling relationships and motion sequences. This review aims to summarize the development of AF...  相似文献   

12.
High-lift systems have a major influence on the sizing, economics, and safety of most transport airplane configurations. The combination of complexity in flow physics, geometry, and system support and actuation has historically led to a lengthy and experiment intensive development process. However, during the recent past engineering design has changed significantly as a result of rapid developments in computational hardware and software. In aerodynamic design, computational methods are slowly superseding empirical methods and design engineers are spending more and more time applying computational tools instead of conducting physical experiments to design and analyze aircraft including their high-lift systems. The purpose of this paper is to review recent developments in aerodynamic design and analysis methods for multi-element high-lift systems on transport airplanes. Attention is also paid to the associated mechanical and cost problems since a multi-element high-lift system must be as simple and economical as possible while meeting the required aerodynamic performance levels.  相似文献   

13.
The axial compressor is one of the most challenging components for aero engine design. The highly complex and multi-disciplinary design process is built up from several separate design phases differing with respect to the number of details. Typically, meanline prediction is the first step of the aerodynamic design process where the goal is to provide a first guess and proper choice of basic design parameters. As a preliminary design procedure it is one of the most important parts of the compressor design process since a poor design decision on these parameters cannot be corrected by subsequent development efforts. The design of a compressor is always a compromise between contradicting requirements like high efficiency, low number of stages and high surge margin. This is typical for multi-criterion optimization problems requiring a high number of design analyses and a well-designed procedure for finding trade-off solutions. The paper will show how to automate a given Rolls-Royce preliminary design process in order to find Pareto-optimal trade-off solutions for design conditions. The aspect of process acceleration is also an important goal to release the design engineer from time-consuming parameter studies. Essential elements for speeding up the design process are the use of modern process integration tools, multi-criterion decision concepts, and nonlinear programming algorithms. Results will be shown based on a given Rolls-Royce compressor design for multi-objective optimization with respect to maximum efficiency, maximum surge margin, and maximum overall pressure ratio, where different deterministic and stochastic algorithms are used.  相似文献   

14.
The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology.The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer.SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events.There are major issues as regards to systems approach to aircraft design and these include lack of basic scientific/practical models and tools for interfacing and integrating the components of SE and within a given component, for example, life cycle cost, basic models for linking the key drivers. The paper will review the current state of art in SE approach to aircraft design and identify some of the major challenges, the current state of the art and visions for the future. The review moves from an initial basis in traditional engineering design processes to consideration of costs and manufacturing in this integrated environment. Issues related to the implementation of integration in design at the detailed physics level are discussed in the case studies.  相似文献   

15.
This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization (FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designer experiences during the design optimization process by fuzzy preference functions. In this study, two optimizations are done for Predator MQ-1 Unmanned Aerial Vehicle (UAV): (A) deterministic optimization and (B) robust optimization. In both problems, minimization of takeoff weight and drag is considered as objective functions, which have been optimized using Non-dominated Sorting Genetic Algorithm (NSGA). In the robust design optimization, cruise altitude and velocity are considered as uncertainties that are modeled by the Monte Carlo Simulation (MCS) method. Aerodynamics, stability and control, mass properties, performance, and center of gravity are used for multidisciplinary analysis. Robust design optimization results show 46% and 42% robustness improvement for takeoff weight and cruise drag relative to optimal design respectively.  相似文献   

16.
基于VALOR NPI的航空电子模块DFM分析实现   总被引:1,自引:1,他引:0       下载免费PDF全文
为有效解决设计缺陷造成的航空电子模块可制造性问题,结合航空电子模块产品特点和工艺技术水平,提出建设基于VALOR的航空电子模块可制造性设计自动化设计平台,实现DFM自动化分析与设计,阐述了DFM设计的必要性、技术原理和实现过程,提出了“三库”构建方法和基于物料清单的印制电路板数据分析方法,应用结果表明,提出的方法能够覆盖PCB可制造性问题,提高分析效率。  相似文献   

17.
本文针对复杂产品协同设计、开发与验证过程中的可制造性共性问题,以航空电子系统为典型的复杂系统对象,探讨了可制造性的概念内涵、工作边界、组织架构和开展时机,着重从系统设计和开发策划、系统需求捕获与定义、系统架构定义、系统详细设计与实现和系统验证子过程的角度,详细阐释了可制造性设计融入系统工程过程的实施思路,并结合具体的应用实例,对可制造性设计对产品高质量交付的正向影响进行了阐释,为可制造性工作在系统开发与设计中的落地推广指明了方向、奠定了基础。  相似文献   

18.
19.
贾朝文  冯兵  鄢勃  杨洋  张学帅  刘翔  李燕平 《航空学报》2021,42(2):324507-324507
战斗机电子战系统提供的态势感知、无源攻击引导、电子对抗和主动隐身等作战能力可以极大提升飞机的生存力和杀伤力。为满足电子战系统越来越高的新质作战能力要求、作战对象快速能力提升、贴近实战的作战样式和作战环境不断变化带来的新要求、适应不同战斗机平台及航电任务系统要求等需求,追求高质量和敏捷开发模式,电子战系统架构必须精心设计。采用系统工程方法,按照能力视图、作战视图、系统视图和技术视图对需求和技术进行了迭代研究,基于灵活数字处理算法支持不同战法、全域综合共用、以快应变和以柔制变等顶层设计思想,从全数字化处理、综合化、可扩展和开放式等多个视角论证了电子战系统架构设计需求,并给出了核心设计要点和方案。战斗机电子战系统架构在大量实践中得到验证,效果良好,能够满足作战使用需求,对下一代战斗机电子系统的研究具有借鉴意义。  相似文献   

20.
Based on the experience gained from Sunrayce '95, the Solar Motion Team has made many changes to the design of the next generation solar car. These changes have resulted in a vehicle that is very different from the “Solar Rolar”, The Dakota Sun is a three wheeled vehicle with separate cab and solar array. This design allows for improved aerodynamics, decreased weight, lower rolling resistance, and ease of manufacture compared to the four wheeled catamaran used in the last race. However, this design sacrifices total enclosed wheel base area, additional room for components, and added power from side solar panels, The major objectives for the team's redesigned Sunrayce '97 entry are: systems integration; decrease the weight of the car; decrease aerodynamic drag; more efficient use of available energy; and increased driver safety. The team has set a standard to use the latest available technology. Although this increases the complexity of the components, by using a systems engineering approach the “Dakota Sun” has evolved into a more integrated vehicle. This philosophy of integrated design has resulted in great improvements in mechanical design and manufacturing techniques, as well as electrical innovations. The major design changes evident from the original Sunraycen '95 vehicle are the result of an evolutionary design process that has produced the highly competitive Sunraycel '97 design outlined in this article  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号