首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对超大功率霍尔推力器放电参数特性评估,开展放电电压和流量等参数变化对性能影响的仿真及试验研究,以确定推力器设计最优匹配的放电电压及放电电流工况。建立了Particle-in-Cell(PIC)数值仿真模型,并搭建了HET-450大功率霍尔推力器试验平台;针对变放电电压、变流量下推力器放电特性,仿真计算给出了放电通道内原子密度、电势以及电子温度等分布,探究了推力器电离和加速运行机理,进一步,结合试验,开展了放电电流、推力等比对分析。结果表明:放电电压从300V增加至500V过程中,电离效率逐渐提升,因而放电电流、推力以及阳极效率均递增,而继续增加放电电压则会导致过热场的产生,离子与壁面作用增强导致电离出的离子再次复合,工质利用率下降的同时壁面损失增加,宏观表现为阳极效率的下降。此外,仿真与试验所获得放电电流、推力等结果符合良好,说明建模合适;在500V,80mg/s条件下,推力达2.1N、阳极效率60%,达到设计要求,表明设计合理有效。  相似文献   

2.
宋莹莹  顾左  王蒙  赖承祺  郭伟龙 《推进技术》2019,40(11):2633-2640
为了准确掌握离子推力器放电室阳极壁面电流密度分布特性,并深入理解阳极壁面处等离子体运动特性,设计了近阳极壁面等离子体诊断的具体实施方案,并基于LIPS-200离子推力器开展了近阳极壁面处等离子体诊断试验研究,得到了主要磁极附近壁面等离子体参数,并得到阳极壁面吸收电流密度分布特性。试验结果表明:LIPS-200离子推力器阳极壁面处主要磁极附近的等离子体密度范围为,测试点的电子温度范围为,壁面电流密度范围为;柱段壁面电子温度相对锥段较低,但电流密度较大,尤其在中间极靴位置电流密度最大,约为阴极极靴处电流密度的3倍,约为屏栅极靴处电流密度的2倍,阳极电流主要在放电室中间极靴处发生损失。  相似文献   

3.
本文从阳极层霍尔推力器的技术特点出发,分析了单级和双级阳极层霍尔推力器在结构和性能上的差异;梳理国内外阳极层霍尔推力器的研究现状,结合未来大载荷空间任务的动力需求指出阳极层霍尔推力器未来的发展趋势;最后,提出了阳极层霍尔推力器在研制中的主要技术问题,主要包括电离与加速独立控制、放电模式与模式跳变、推力器工作模式的多样化、高电压强磁场设计、小间隙高压绝缘问题、高电压热设计以及放电室溅射削蚀等,分析了技术难点并给出解决思路。  相似文献   

4.
LHT-100霍尔推力器热特性模拟分析   总被引:2,自引:2,他引:0       下载免费PDF全文
孙明明  顾左  马永斌  丁汀  龙建飞 《推进技术》2014,35(12):1715-1721
为了对LHT-100霍尔推力器提出热设计优化措施,采用有限元仿真软件进行LHT-100霍尔推力器的稳态、瞬态及空间在轨环境模拟热分析研究,并通过热平衡试验进行了结果比对。分析及试验结果表明,处于工作状态时霍尔推力器的高温部件主要是放电腔、阳极和导磁底座,而受高温影响薄弱部件内线圈、气路组件的温度则分别达到了约401~421℃和141~381℃。热设计优化建议为,在放电腔与内线圈之间增加独立热屏结构后可以有效降低内线圈温度约80~90℃,在阳极气路组件上存在的热应力会是影响霍尔推力器可靠性的重要因素,需要在热设计中得到充分考虑。  相似文献   

5.
以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况。使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s。另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态。电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°。所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑。  相似文献   

6.
为研究宏观放电参数对大功率霍尔推力器点火初始阶段的影响,首先在一台10 kW霍尔推力器上实验测量了点火初始阶段不同宏观放电参数下的阳极电流变化特性,然后采用PIC数值模型计算了不同放电电压和质量流量下点火初始阶段阳极电流和离子密度的变化特性。结果表明:增大放电电压与质量流量都能够增大点火启动过程初始阶段阳极电流的上升斜率,而增大磁场强度会降低点火启动过程初始阶段阳极电流的上升斜率;放电电压和质量流量的改变不会引起点火初始阶段电子和中性气体发生碰撞电离位置的改变。  相似文献   

7.
圆柱形阳极层霍尔推力器内轮辐效应的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
《推进技术》2019,40(7):1676-1680
为了研究圆柱形阳极层霍尔推力器内关于电子反常输运的轮辐效应(Rotating Spoke),分别采用高速相机和静电探针来捕捉圆柱形阳极层霍尔推力器内的轮辐效应图像和等离子体震荡频率。结果表明:在放电电压350V,放电电流3.5A,阳极上表面处的磁场强度为125Gs,工作气压为2×10-2Pa时,由测得轮辐效应的放电图像和波形可知,轮辐效应的频率为10kHz~12.5kHz。当磁场强度增加到205Gs,放电电流增加到4A时,轮辐效应的频率增加到25kHz,并且轮辐效应出现分裂和合并现象。此研究结果表明,圆柱形阳极层霍尔推力器内不仅存在轮辐效应现象以及角向电场,而且不同的工作参数会有不同的轮辐效应模式和频率。  相似文献   

8.
LIPS-300离子推力器环形会切磁场等效磁路分析研究   总被引:2,自引:2,他引:2       下载免费PDF全文
胡竟  王亮  张天平  江豪成 《推进技术》2018,39(3):715-720
针对多种工作模式下推力器放电室磁路设计的复杂性问题,为实现电磁体磁场向永磁体磁场的磁路转换,利用磁路等效法,建立离子推力器磁路系统的等效磁路模型。在此基础上,结合有限元理论,分析获得产生与电磁体磁场的磁路构型相同的永磁体结构尺寸,将离子推力器放电室在永磁体磁场状态与电磁体磁场状态下的磁感应强度进行对比。结果表明:磁路转换后关键点磁感应强度相对误差低于5%,且永磁体样机工作放电损耗为141.8W/A,阳极震荡电压为10V,符合磁路转换要求和磁场设计目标,验证了等效磁路模型分析结果的正确性及方法的可行性。  相似文献   

9.
以放电室阳极振荡电压和放电损耗的最小化为目标,结合正交试验方法,获得了性能提升后可实现长期稳定工作的LIPS-200离子推力器最佳磁路结构与磁场构型。基于此,运用等效磁路方法,采用有限元离散形式,建立了LIPS-200离子推力器放电室磁场模型,研究了特定空间排布下电磁体的永磁体替代方案。利用放电室磁感应强度测试和整机工作性能对比验证了永磁体替代方案的等效性及分析方法的可行性和计算结果的正确性。结果表明:两种磁场状态下的推力器放电室特征位置磁感应强度相对误差低于5%,且推力器工作敏感参数变化情况符合预期,满足磁路等效目标,达到磁路结构再优化,工作性能再提升的整体目标。   相似文献   

10.
为了实现离子推力器多模式化,分析了离子推力器功率宽范围调节限制因素,提出了两种宽范围调节策略;针对我国小行星探测任务,完成了30cm多模式离子推力器研制、功率宽范围调节限制条件确定、以及两种调节策略下多模式工作点设计及对比研究。结果显示,通过降低放电室磁场强度可延伸离子推力器最小稳定工作功率,提高束流均匀性,实现离子推力器更宽功率范围多工作点设计;功率宽范围调节主要是屏栅电压和束电流的宽范围调节,二者通过栅极导流系数限制和交叉限制而约束;推力随功率增加呈线性增加关系,比冲随功率的增加总体上呈先快速增加后趋于稳定的趋势;30cm多模式离子推力器在0.25kW~5kW内稳定工作,推力10mN~186mN,比冲1522s~3586s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号