首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
离子回旋共振加热(Ion Cyclotron Resonance Heating,ICRH)单元的加热效果对磁等离子体发动机(Magnetoplasma Rocket Engine,MPRE)的推力性能有至关重要影响。为研究ICRH的加热效果,本文建立了用于模拟MPRE中ICRH单元的二维轴对称多组分流体模型,并采用该模型对MPRE中螺旋波等离子体源的工作模式与不同输入条件的ICRH单元进行了模拟。计算结果表明:螺旋波等离子体源在放电过程中要经历从Trivelpiece-Gould (TG)波模式向螺旋波模式的转变过程,模式转变时电子温度出现峰值,等离子体密度迅速上升;开启ICRH输入后,电子参数基本不变,离子温度有明显提升,表明ICRH单元对离子有显著加热效果;此外,离子温度随ICRH输入增大而升高,ICRH输入电流150A时,离子温度可达50eV以上。  相似文献   

2.
为了明确国内200 mm口径离子推力器放电室出口(即栅极上游附近)离子密度径向分布,采用实验与数值仿真相结合的方法对LIPS-200推力器放电室出口离子密度进行研究。应用法拉第筒分别测试推力器栅极下游50mm和100mm位置处束流特性,结合经验模型计算出栅极出口(z=0mm)束流离子径向分布。在此基础上,通过栅极数值模拟仿真,分析出栅极系统透过率随栅孔电流变化关系,进而反推计算出放电室出口离子密度径向分布。结果显示:放电室出口离子密度平均值约为9.0×10~(17)m~(-3),最大值约为1.54×10~(18)m~(-3),最小值约为4.6×10~(17)m~(-3);离子密度径向分布具有较好的中心轴对称性,离子密度从中心处沿着径向先缓慢减小,在径向位置约为50mm时出现快速下降;对比放电室出口与栅极出口离子密度径向分布发现,中心位置两者相差最大,边缘处相差最小。  相似文献   

3.
针对建立三维数值模型对螺旋波等离子体推力器放电进行数值模拟计算量过大的问题,使用COMSOL多物理场软件建立了二维轴对称结构,采用漂移-扩散流体模拟方法,分别改变工质气体种类、气体压强及射频功率,模拟了螺旋波等离子体放电过程,分析了不同参数条件下放电室中电子数密度、电子温度、碰撞功率损耗分布情况,结果显示,在一定条件下气体压强越大,电子数密度越高,电子温度越低,碰撞功率损耗越大,在1600~2400 W范围内,随着射频功率增大,电子数密度和碰撞功率损耗增加,电子温度变化较小,电子数密度在10~(18 ) m~(-3)左右,为螺旋波等离子体推力器的设计与实验研究提供了参考。  相似文献   

4.
为了研究螺旋波放电的高电离效率,揭示螺旋波等离子体推力器射频功率向等离子体的沉积机制,对m=+1型螺旋波与TG波耦合模式随磁场的变化特征,以及对波磁场、电场、电流密度的影响规律进行了数值模拟研究。计算结果显示:B0≤500G的低磁场条件下,螺旋波与TG波构型相似,耦合较强,大部分射频功率由螺旋波耦合到TG波内,并经TG波的强阻尼作用,在天线下游0.2~0.4m距离内沉积到等离子体中;高磁场下,螺旋波向TG波的耦合效率降低,螺旋波将一部分射频能量输运到下游并持续向TG波耦合,由TG波的阻尼作用沉积到等离子体中,轴向的功率分布特征就表现为螺旋波的本征模式;随着外加磁场强度的增大,波磁场、电场的部分分量沿z轴的分布由幅值衰减状态变为准周期性波动状态,电流密度的变化特征与功率沉积密度较为相似。  相似文献   

5.
波加热磁等离子体推力器具有适于高功率运行(约100 kWe~1 MWe)、高推力密度(约4×105 N/m2)、可变推力(约1~100 N)和可变比冲(约3 000~10 000 s)等优点,是适用于未来多种空间任务的高性能电推力器。结合波加热磁等离子体推力器的发展历程,梳理了近年来波加热磁等离子体推力器的国内外研究现状,总结了其发展面临的单程离子回旋共振加热、等离子体分离控制、强磁场中高密度等离子体诊断等理论问题,以及高效热管理、高功率射频电源等工程难点。最后,根据波加热磁等离子体推力器的特点,对其具体应用方向做出了展望。  相似文献   

6.
为了获得30cm口径离子推力器20A额定发射电流空心阴极工作时小孔区的等离子体特性参数,并验证现有阴极小孔结构设计下的阴极电流发射能力,采用数值模拟及有限元分析方法研究了空心阴极小孔区的等离子体特性参数。结果显示:空心阴极小孔区的中性原子密度基本在4×10~(21)~6×10~(21)/m~3,分布较为均匀且越靠近小孔出口区域的原子密度越低;当阴极发射体温度为1800K时,采用等离子体零维扩散模型得到阴极小孔区轴向平均电子温度约为2.66e V,且靠近阴极顶小孔出口方向电子温度相对较高,从小孔区入口至出口电子温度增幅在1~2e V;通过离子连续性方程得到阴极孔区内,等离子体密度约在1×10~(21)~1.4×10~(21)/m~3,靠近出口处的等离子体密度降低较为明显;通过电子连续性方程,得到小孔区入口处的电子电流约为7.2A,而出口处的电子电流约为11.6A,与性能测试试验结果一致,电子电流增益系数约60%;离子电流密度峰值约为6.16×106A/m~2,出现在距离小孔入口约0.5mm处。通过理论分析认为,阴极孔区的腐蚀特点是靠近出口处的直径在离子腐蚀作用下不断地扩张,并在扩张到一定程度后,孔区出口处被腐蚀后的直径将不会再发生变化,理论分析腐蚀趋势与兰州空间技术物理研究所研制的LHC-5阴极小孔区寿命试验腐蚀情况基本一致。  相似文献   

7.
张磊  张百灵  苌磊  李益文  段朋振 《推进技术》2017,38(9):2152-2160
为了揭示螺旋波等离子体推力器中的等离子体源功率耦合机理,针对气体工质电离后被射频加热的稳态过程,考虑等离子体密度非均匀分布条件,采用三参数压力函数(fa,sp,tp)和温度函数(f_a,s_t,t_t)表示柱状等离子体内压力和温度的径向分布,分析了径向压力梯度、温度梯度对螺旋波等离子体内功率沉积、波电场、波磁场和电流密度的影响。考虑梯度为正,梯度为负和梯度为零三种梯度类型。结果发现:压力梯度为正时,螺旋波在等离子体临近壁面处的功率沉积减弱,但射频波透入深度增加,原因是靠近管壁处等离子体密度较低,RF波径向单位长度衰减较少,透入深度增加。温度梯度为负时,柱状等离子体中心处能量沉积变强,原因是管中心位置等离子体密度较大,电子温度较高,与RF波能量耦合增强;横向截面的电磁场、电流密度分布在不同压力和温度梯度下基本不变,证明了m=1模式的稳定性。  相似文献   

8.
电子回旋共振等离子体推力器(ECRPT)是一种高比冲、高效率且结构简单的新型电磁式推力器。为了研究推力器的放电原理和工作机制,采用漂移-扩散流体模拟方法,仿真模拟了微波等离子体放电过程。仿真结果表明,电子数密度达到10~(16)~10~(17)m~(-3)数量级,氙气的电子数密度比氩气高50%;电子数密度、碰撞功率损耗均随着计算域内压强的增大而增大,电子温度随压强的增大而减小;电子数密度、碰撞功率损耗随着入射微波功率的增大而增大。在未来ECRPT的实际应用中,可以通过使用氙气,适当增大推力器腔内压强以及入射微波功率,使其具有最佳的推力、比冲和工作效率。  相似文献   

9.
为探究不同气体条件下螺旋波电推进器等离子体源的放电特征,开展了氩气、氦气和氮气放电的光谱诊断实验研究。氩气和氦气为工质气体的放电条件下,部分波长谱线相对强度随功率的增加而增强,且斜率出现两次跳变,考虑是螺旋波放电过程中的模式转换,即容性向感性、感性向波模式的转换。三种工质气体,在较低的压强下,各谱线强度均随压强增大而迅速增强,但氩气放电下压强继续增大达到1.0Pa以后,谱线强度增强趋势变缓甚至达到“饱和”状态,而氦气和氮气放电下压强增大到0.5~0.65Pa,谱线强度出现降低趋势,氦气和氮气放电强度对压强更为敏感。  相似文献   

10.
介绍了澳大利亚国立大学在等离子体推进领域的发展历程、技术特色及其工作原理(螺旋波双层推进器—Helicon double layer thruster、双阶段4层栅格离子发动机—Dual stage 4 grid thruster、口袋火箭—Pocket rocket),主要装置及其特征参数(WOMBAT—Waves on magnetized beams and turbulence、WOMBAT XL、Chi Kung、Piglet)、诊断设备及其典型结果 (射频补偿朗缪尔探针、发射探针、B-dot磁探针、迟滞场能量分析仪、高灵敏度动量测量摆)以及研究成果、人才队伍、项目来源和国际合作等情况,并结合在等离子体推进领域的研究现状以及研究中遇到的科学技术问题,给出了针对性的建议和思考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号