首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy flow in various large-scale processes of the Earth's magnetosphere is examined. This energy comes from the solar wind, via the dawn-to-dusk convection electric field, a field established primarily by magnetic merging but with viscous-like boundary interaction as a possible contributor. The convection field passes about 5 × 1011 W to the near-Earth part of the plasma sheet, and also moves the plasma earthward. In addition, 1–3 × 1011 W are given to the complex system of the Birkeland currents: about 4 × 1010 of this, on the average, goes to parallel acceleration, chiefly of auroral electrons, about 2–3 times that amount to joule heating of the ionosphere, and the rest heats the ring current. The ring current stores energy (mainly as kinetic energy of particles) of the order of 2 × 1015 J, and this value rises and decays during magnetic storms, on time scales ranging from a fraction of a day to several days. The tail can store comparable amounts as magnetic energy, and appreciable fractions of its energy may be released in substorms, on time scales of tens of minutes. The sporadic power level of such events reaches the order of 3 × 1012 W. The role of magnetic merging in such releases of magnetic energy is briefly discussed, as is the correlation between properties of the solar wind and magnetospheric power levels.  相似文献   

2.
Direct numerical simulations of the geodynamo and other planetary dynamos have been successful in reproducing the observed magnetic fields. We first give an overview on the fundamental properties of planetary magnetism. We review the concepts and main results of planetary dynamo modeling, contrasting them with the solar dynamo. In planetary dynamos the density stratification plays no major role and the magnetic Reynolds number is low enough to allow a direct simulation of the magnetic induction process using microscopic values of the magnetic diffusivity. The small-scale turbulence of the flow cannot be resolved and is suppressed by assuming a viscosity far in excess of the microscopic value. Systematic parameter studies lead to scaling laws for the magnetic field strength or the flow velocity that are independent of viscosity, indicating that the models are in the same dynamical regime as the flow in planetary cores. Helical flow in convection columns that are aligned with the rotation axis play an important role for magnetic field generation and forms the basis for a macroscopic α-effect. Depending on the importance of inertial forces relative to rotational forces, either dynamos with a dominant axial dipole or with a small-scale multipolar magnetic field are found. Earth is predicted to lie close to the transition point between both classes, which may explain why the dipole undergoes reversals. Some models fit the properties of the geomagnetic field in terms of spatial power spectra, magnetic field morphology and details of the reversal behavior remarkably well. Magnetic field strength in the dipolar dynamo regime is controlled by the available power and found to be independent of rotation rate. Predictions for the dipole moment agree well with the observed field strength of Earth and Jupiter and moderately well for other planets. Dedicated dynamo models for Mercury, Saturn, Uranus and Neptune, which assume stably stratified layers above or below the dynamo region, can explain some of the unusual field properties of these planets.  相似文献   

3.
Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to ionize the Mach number 3.5 (650 m/s), 0.023 kg/m3 airflow. In a MHD channel of 16 mm × 10 mm × 20 mm, MHD open voltage of 10 V is realized in the magnetic field of 1.25 T, and power of 0.12 mW is extracted steadily and con-tinuously in the magnetic field of 1 T. The reasons for limited power generation are proposed as:low conductivity of RF discharge; large touch resistance between MHD electrode and plasma;strong current eddies due to flow boundary layer. In addition, the cathode voltage fall is too low to have obvious effects on MHD power generation.  相似文献   

4.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly disturbed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale electrostatic field directed from dawn to dusk over the magnetotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudinal energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored mainly in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field (ratio 1: 107). An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area with dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge. It is shown that the predictions agree with satellite observations and with the data obtained from the two-dimensional instrument networks operated in Northern Europe during the International Magnetospheric Study (IMS, 1976–79).  相似文献   

6.
A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 11976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45° east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparison of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.  相似文献   

7.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   

8.
振动发电就是利用电磁感应、压电技术、智能材料等将外部的机械振动能量通过一定装置转换成电能,实现机械振动能量和电能的转换.在分析磁控形状记忆合金(Magnetic Shape MemoryAlloy,简称MSMA)振动发电原理的基础上,利用MSMA智能材料的维拉利效应对振动能量进行收集,建立了MSMA振动发电机的数学模型,求出振动发电机感应电动势与压应力及外加磁场的数学关系.分析了振动应力幅值、频率的响应特性,仿真结果验证了MSMA振动发电的可行性.  相似文献   

9.
This paper presents an innovative system for airport surface surveillance based on a novel magnetic sensing technology. Ferromagnetic objects such as vehicle motors, aircraft engines, and landing gears are detected through their deformation of the Earth's magnetic field. Tests have shown that although the local changes of the Earth's magnetic field are extremely small, the proposed sensing technology is able to detect them reliably. The primary objective of the proposed approach is to provide a complementary surveillance system for existing and future Advanced Surface Movement Guidance and Control Systems (A-SMGCS) at large airports or a cost-effective surveillance solution for monitoring critical areas at medium and small airports. Unaffected by weather conditions, interference and shadowing effects, the system provides reliable position, velocity, and direction information without requiring any equipment in aircraft or ground vehicles. The outcome of a comprehensive market analysis is discussed and test results under real life conditions at two airports are evaluated analytically.  相似文献   

10.
车载导弹液压起竖装备因安装空间狭小、装机功率受限导致起竖时间长的问题难以解决.为提高起竖速度,设计了基于流量可调燃气发生器的起竖动力装置,建立了燃气发生器/液压系统/导弹一体化计算数学模型,对比分析了定喉面和变喉面两种工作模式下的起竖特性.计算结果表明:定喉面流量不可调工作模式,不能适应起竖变负载特性,无法保持导弹匀速...  相似文献   

11.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

12.
Sounding rockets and satellites have discovered a large variety of plasma waves within the Earth's magnetosphere—geospace. These waves are found over a frequency range of millihertz to megahertz. The frequency ranges are generally associated with characteristic frequencies such as the plasma frequency and gyrofrequency. Most waves are generated by hot or streaming magnetospheric plasma; some waves are due to lightning discharges, to intentional man-made transmitters or to incidental radiation from power transmission systems. Propagation of waves from the observation region back to a probable source region can be modelled using ray tracing techniques in a model magnetosphere where the electron number density, ion composition and magnetic field vector is specified. Information in addition to the common amplitude-frequency-time spectrograms can be obtained from the received waves using multiple antennas and receivers. Cross-correlation of the wave electric and magnetic components can provide information on the wave polarization and direction of propagation and on the wave distribution function.  相似文献   

13.
Current technology has evolved low cost, highly reliable solid state vector magnetometers with excellent angular resolution. This paper discusses the role of a three-axis magnetometer as a new instrument for aircraft attitude determination. Using flight data acquired by an instrumented aircraft, attitude is calculated using the Earth's magnetic field vector and compared to measured attitudes. The magnetic field alone is not adequate to resolve all attitude variations and the need for a second reference angle or vector is discussed. A system combining the functions of heading determination and attitude measurement is presented to show that both functions can be implemented with essentially the same component count required to measure heading alone. lt is concluded that with the correlation achieved in calculated and measured attitude there is a potential application of vector magnetometry in attitude measurement systems.  相似文献   

14.
This review is devoted to the problem of the internal fine structure of the Earth's magnetopause. A number of theoretical and experimental papers dealing with this subject is discussed from a unified viewpoint. The Vlasov kinetic approach is used to study the stability of magnetopause magnetic surfaces that can be destructed by the growth and overlapping of magnetic islands. The stochastic wandering of magnetic field lines between the destructed surfaces can result in magnetic percolation, i.e. the appearance of a topological connection of interplanetary and geomagnetic field lines. Such a process may be considered as a mechanism of the macroscopic (but spatially localized) reconnection. We discuss this in relation with the phenomena of spontaneous patchy reconnection, recently observed at ISEE satellites and now known as flux transfer events.Drift tearing mode, which is responsible for the growth of magnetic islands can be stabilized due to its coupling with ion sound waves, and the process of percolation will be interrupted if even a thin region with smooth stable magnetic surfaces exists within the magnetopause. Accordingly, we obtain a magnetopause stability threshold for localized reconnection. It is represented in the form of dependence of marginal dimensionless thickness of the magnetopause on the angle of magnetic field rotation within it.Further, we discuss the possible role of lower hybrid turbulence permanently observed within the. magnetopause and speeding up the process of reconnection. Nonlinear calculations supporting the developed model are given in the appendices. We consider briefly the motion of reconnecting flux tubes and evaluate the time necessary for the accomplishment of percolation. The calculations show that the appearance of reconnection patchies at the dayside magnetopause cannot occur too far from the stagnation region. The latter agrees with experimental indications on the most probable site of the formation of flux transfer events. In the concluding part of the review we discuss the necessary limitations on the theory, possible lines of its future advance and comparison with the experimental data.  相似文献   

15.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

16.
An attitude determination algorithm suitable for micro aerial vehicle (MAV) applications is developed. The algorithm uses Earth's magnetic and gravity field vectors as observations. The magnetic field vector measurements are obtained from a magnetometer triad. The gravity field vector is measured by fusing information from an accelerometer triad with GPS/WAAS (wide area augmentation system) velocity measurements. Two linearization and estimator designs for implementing the algorithm are discussed. Simulation and experimental flight test results validating the algorithm are presented.  相似文献   

17.
本文总结和阐述了现有脉冲磁流体发电机的类型及其国内外研究进展,同时对磁流体发电过程中的关键技术和科学问题(近电极压降、边界层分离、Hartmann效应、发电系统建模、性能分析、高磁雷诺数、强电磁效应、阻抗匹配等)进行了综述总结,以期掌握磁流体动力学行为及能量转化机理,提升发电机性能,并介绍了在航空航天领域的三种主要应用方式:磁流体能量旁路、超燃冲压发动机驱动的磁流体发电及表面磁流体发电。最后,对脉冲磁流体发电技术研究的发展趋势进行了总结和展望,旨在对其实用化进程提供指导和借鉴意义。  相似文献   

18.
超声速氩气流磁流体发电初步实验研究(英文)   总被引:5,自引:1,他引:5  
利用激波风洞,采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入电离种子K2CO3粉末,实现高温条件下导电流体的产生,开展了超声速氩气流磁流体功率提取初步实验研究。在喷管入口总压0.32MPa、总温6504K,磁场强度约0.5T、喷管出口气流速度1959m/s的条件下,对分段磁流体功率提取通道电极的感应电压和短路电流进行了测量,实验测量结果与理论计算相吻合,并由电压电流计算得出了平均电导率约20S/m左右,在负载系数为0.5的情况下,磁流体功率提取通道最大的功率密度可达4.7971MW/m3,最大焓提取率为0.34%。最后分析并给出了气体状态参数T1,M1,T2,M2的测试原理与方法。  相似文献   

19.
The models are examined which are proposed elsewhere for describing the magnetic field dynamics in ring-currentDR during magnetic storms on the basis of the magnetospheric energy balance equation. The equation parameters, the functions of injectionF and decay , are assumed to depend on interplanetary medium parameters (F and during the storm main phase) and on ring-current intensity ( during the recovery phase). The present-day models are shown to be able of describing theDR variations to within a good accuracy (the r.m.s. deviation 5 < < 15 nT, the correlation coefficient 0.85 <r < 1). The models describe a fraction of the geomagnetic field variation during a magnetic storm controlled by the geoeffective characteristic of interplanetary medium and, therefore responds directly to the variation of the latter. The fraction forms the basis of the geomagnetic field variations in low and middle latitudes. The shorter-term variations ofDR are affected by the injections into the inner magnetosphere during substorm intervals.During magnetic storms, the auroral electrojets shift to subauroral latitudes. When determining theAE indices, the data from the auroral-zone stations must be supplemented with the data from subauroral observatories. Otherwise, erratic conclusions may be obtained concerning the character of the relationships ofDR toAE or ofAE to interplanetary medium parameters. Considering this circumstance, the auroral electrojet intensity during the main phase is closely related to the energy flux supplied to the ring current. It is this fact that gives rise simultaneously to the intensification of auroral electrojets and to the large-scale decrease of magnetic field in low latitudes.The longitudinal asymmetry of magnetic field on the Earth's surface is closely associated with the geoeffective parameters of interplanetary medium, thereby making it possible to model-estimate the magnetic field variations during magnetic storms at given observatories. The inclusion of the field asymmetry due to the system of large-scale currents improves significantly the agreement between the predicted and model field variations at subauroral and midlatitude observatories. The first harmonic amplitude of field variation increases with decreasing latitude. This means that the long-period component of theD st -variation asymmetry is due rather to the ring-current asymmetry, while the shorter-term fluctuations are produced by electrojets. The asymmetry correlates better with theAL indices (westward electrojet) than with theAU indices (eastward electrojet).The total ion energy in the inner magnetosphere during the storm main phase is sufficient for the magnetic field observed on the Earth's surface to be generated. The energy flux to the ring current is 15% of the -energy flux into the magnetosphere.  相似文献   

20.
刘飞标  王铸  彭燕  欧东斌  朱安文 《航空学报》2020,41(11):123980-123980
针对未来航空航天任务对大功率空间电源的迫切需求,开展了国内首次高温惰性气体法拉第型磁流体发电机试验研究。试验采用电弧加热器作为模拟热源,以氩气作为工质,添加铯作为电离种子以提高工质电导率,成功实现了对法拉第型磁流体发电机的原理性验证,在1 T磁场环境的试验条件下取得了最高194 W的发电功率,功率密度为866 kW/m3。根据试验条件对发电过程进行了三维数值模拟,分析结果表明:发电机输出性能受电极压降和工质速度的影响较大,需要在后续研究中改进发电机工艺以降低电极压降,并对加速喷管重新进行设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号