首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Launch and Early Operation of the MESSENGER Mission   总被引:1,自引:0,他引:1  
On August 3, 2004, at 2:15 a.m. EST, the MESSENGER mission to Mercury began with liftoff of the Delta II 7925H launch vehicle and 1,107-kg spacecraft including seven instruments. MESSENGER is the seventh in the series of NASA Discovery missions, the third to be built and operated by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) following the Near Earth Asteroid Rendezvous (NEAR) Shoemaker and Comet Nucleus Tour (CONTOUR) missions. The MESSENGER team at JHU/APL is using efficient operations approaches developed in support of the low-cost NEAR and CONTOUR operations while incorporating improved approaches for reducing total mission risk. This paper provides an overview of the designs and operational practices implemented to conduct the MESSENGER mission safely and effectively. These practices include proven approaches used on past JHU/APL operations and new improvements implemented to reduce risk, including adherence to time-proven standards of conduct in the planning and implementation of the mission. This paper also discusses the unique challenges of operating in orbit around Mercury, the closest planet to the Sun, and what specific measures are being taken to address those challenges.  相似文献   

2.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   

3.
The Ball Micromission Spacecraft (MSC) is a multi-purpose platform capable of supporting science missions at distances from the Sun ranging from 0.7 to 1.7 AU. In the baseline scenario, MSC is launched as a secondary payload on an Ariane 5 rocket from Kourou, French Guiana, to GTO using the Ariane 5 structure for auxiliary payloads (ASAP5). The maximum launch wet mass is 242 Kg and can include up to 45 Kg of payload depending on AV needs. The on-board propulsion system is used for maneuvering in the Earth-Moon system and injecting the spacecraft into its final orbit or trajectory. For Mars missions, MSC enables orbiting Mars for science payloads and/or communications and navigation assets, or for precision Mars fly-bys to drop up to six probes. The micromissions spacecraft bus can be used for science targets other than Mars, including the Moon, Earth, Venus, Earth-Sun Lagrange points, or other small bodies. This paper summarizes the current spacecraft concept and describes the multimission spacecraft bus implementation in more detail.  相似文献   

4.
Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year).  相似文献   

5.
Bow Shock and Upstream Phenomena at Mars   总被引:1,自引:0,他引:1  
Mazelle  C.  Winterhalter  D.  Sauer  K.  Trotignon  J.G.  Acuña  M.H.  Baumgärtel  K.  Bertucci  C.  Brain  D.A.  Brecht  S.H.  Delva  M.  Dubinin  E.  Øieroset  M.  Slavin  J. 《Space Science Reviews》2004,111(1-2):115-181
Mars Global Surveyor is the sixth spacecraft to return measurements of the Martian bow shock. The earlier missions were Mariner 4 (1964), Mars 2 and 3 (1972), Mars 5 (1975) and Phobos 2 (1989) (see reviews by Gringauz, 1981; Slavin and Holzer, 1982; Russell, 1985; Vaisberg, 1992a,b; Zakharov, 1992). Previous investigations of planetary bow shocks have established that their position, shape and jump conditions are functions of the upstream flow parameters and the nature of the solar wind — planet interaction (Spreiter and Stahara, 1980; Slavin et al., 1983; Russell, 1985). At Mars, however, the exact nature of the solar wind interaction was elusive due to the lack of low altitude plasma and magnetic field measurements (e.g., Axford, 1991). In fact our knowledge of the nature of the interaction of Mars with the solar wind was incomplete until the arrival of MGS and the acquisition of close-in magnetic field data (Acuña et al., 1998). As detailed by a series of review papers in this monograph, the Mars Global Surveyor (MGS) mission has now shown that the Mars environment is very complex with strong, highly structured crustal magnetic remnants in the southern hemisphere, while the northern hemisphere experiences the direct impingement of solar wind plasma. This review paper first presents a survey of the observations on the Martian bow shock and the upstream phenomena in the light of results from all the missions to date. It also discusses the kinetic properties of the Martian bow shock compared to the predictions of simulations studies. Then it examines the current status of understanding of these phenomena, including the possible sources of upstream low-frequency waves and the interpretations of localized disturbances in the upstream solar wind around Mars. Finally, it briefly discusses the open issues and questions that require further study.  相似文献   

6.
ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.  相似文献   

7.
The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.  相似文献   

8.
Ceylan  Savas  van Driel  Martin  Euchner  Fabian  Khan  Amir  Clinton  John  Krischer  Lion  Böse  Maren  Stähler  Simon  Giardini  Domenico 《Space Science Reviews》2017,211(1-4):595-610

The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green’s functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green’s functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.

  相似文献   

9.
10.
Gibson  W.C.  Burch  J.L.  Scherrer  J.R.  Tapley  M.B.  Killough  R.L.  Volpe  F.A.  Davis  W.D.  Vaccarello  D.C.  Grismore  G.  Sakkas  D.  Housten  S.J. 《Space Science Reviews》2000,91(1-2):15-50
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission will be the first of the new Medium-class Explorer (MIDEX) missions to fly. IMAGE will utilize a combination of ultraviolet and neutral atom imaging instruments plus an RF sounder to map and image the temporal and spatial features of the magnetosphere. The eight science sensors are mounted to a single deckplate. The deckplate is enveloped in an eight-sided spacecraft bus, 225 cm across the flats, developed by Lockheed Martin Missiles and Space Corporation. Constructed of laminated aluminum honeycomb panels, covered extensively by Gallium Arsenide solar cells, the spacecraft structure is designed to withstand the launch loads of a Delta 7326-9.5 ELV. Attitude control is via a single magnetic torque rod and passive nutation damper with aspect information provided by a star camera, sun sensor, and three-axis magnetometer. A single S-band transponder provides telemetry and command functionality. Interfaces between the self-contained payload and the spacecraft are limited to MIL-STD-1553 and power. This paper lists the requirements that drove the design of the IMAGE Observatory and the implementation that met the requirements.  相似文献   

11.
12.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   

13.
Radar observations in the past were used to investigate the astronomical properties of the planet and its reflectivity in radar frequencies. Because of the difficulties in signal detection and processing due to the low level of return signal, the data were published only in the form of Doppler spectrograms. In view of the increasing interest in Mars and the practicability of missions to Mars this paper uses the published data to evaluate the angular behavior of the radar backscattering characteristics of Mars; a required information for the design of radar equipment of spacecrafts. In addition, results of past observations are summarized, analyzed and discussed in terms of a general interpretation of the Martian surface. It is found that the generally accepted suggestion that Mars is a relatively smooth planet, smoother than the Moon, is confirmed by most of the results, but not all observations agree with this hypothesis. A surface model of relief and composition based on radar information in conjunction with other observations is reviewed. The processing methods of radar return signals are compared for a better understanding of the handling of the Doppler spectrogram, a form which is most widely used for the presentation of processed data.An extensive bibliography of available papers and reports relevant to radar observations and the surface and lower atmosphere of Mars is included. The literature is concerned mainly with post-Mariner IV experiment, the mission which changed considerably many conceptions of Mars.  相似文献   

14.
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.  相似文献   

15.
The increasing need for a continuous communications link with U.S. Department of Defense (DoD) spacecraft during test missions in low Earth orbit (LEG) has resulted in greater interest in geosynchronous data relay services. This may be a more economical alternative to building additional remote tracking stations for the Air Force Satellite Control Network (AFSCN), and avoids tying up operational assets for a test mission. A low-cost near-term approach for such a space-based data relay system would utilize two existing Defense Satellite Communication System III spacecraft, two existing ground terminals, and a small, standardized terminal using autonomous antenna pointing for the space vehicle under test. Such a system design is presented  相似文献   

16.
基于航天测控的实时仿真系统设计   总被引:1,自引:0,他引:1  
航天器发射试验具有高风险性,而承担航天器测控的测控系统规模庞大、关系复杂,其测控设备、软件的正确性关系到试验成败。仿真技术的广泛应用,使设备、软件的正确性在发射任务前就可以得到充分验证,从而提高发射试验的安全性。以航天器试验任务为背景设计的实时仿真系统,在航天测量船上得到了成功应用,取得了良好的效果。  相似文献   

17.
宽波束中继技术在空间站任务中的应用研究   总被引:2,自引:0,他引:2  
针对航天器现有窄波束中继终端天线在姿态快速变化及姿态异常条件下提供测控支持的局限性,提出了利用宽波束中继技术提供测控通信支持的方案。基于宽波束中继天线性能、天地链路性能对测控通信支持的影响分析,提出了改善链路性能的优化方案。结合空间站任务载人航天器各阶段测控通信支持的特点,分析了宽波束中继在入轨段、长期运行段和返回段的应用。分析结果表明:宽波束中继可为载人航天器从海南发射场发射时的入轨提供测控支持,也可为载人飞船返回提供测控支持。  相似文献   

18.
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement \(>97~\%\) of the time and is, therefore, not expected to endanger the InSight mission objectives.  相似文献   

19.
The present investigation points out the potential of continuously propelled spacecraft for piloted Mars missions and compares them to impulsive propulsion (chemical and nuclear thermal) and ballistic trajectories. Although the results are related to piloted Mars missions, the stated issues raised hold true for a broad range of space missions. It is demonstrated that the use of impulsive propulsion leads to inflexible missions and may result in long total mission durations. Meanwhile, the use of continuous electric propulsion not only guarantees short total mission durations of Mars missions with moderate masses but also results in highly flexible missions. These criteria can be met with a continuous electric propulsion system that provides a thrust level of 100 N and 3000 s of specific impulse. Great potential lies in electric hybrid thrusters. The high-power, two-stage hybrid plasma thruster TIHTUS is currently being developed at the Institute of Space Systems (IRS). Its technology including preliminary laboratory testing results are presented.  相似文献   

20.
Exploration of the planets beyond Mars and their surroundings is already planned. Astronomy researchers are citing important information that can be obtained with instrumented spacecraft that fly beyond the planets of our solar system. Spacecraft flying these missions need power for performing their functions and communicating with Earth stations. Sunlight in these zones is so weak that alternative energy sources are needed. An alternative power source for deep-space missions is radioisotope heated energy converters.. The choice of heat-to-electric power conversion is narrowing to: 1) the Stirling engine; and 2) a combined cycle with thermionic and alkali-metal thermoelectric (AMTEC) heat-to-electricity conversion. For propulsion into deep space, a nuclear-reactor-heated AMTEC energy converter that powers ion engines can become the best alternative to hoisting tons of rockets into Earth orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号