首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pletser V 《Acta Astronautica》2004,55(10):829-854
Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations.  相似文献   

2.
Zemskov  V. S.  Raukhman  M. R.  Shalimov  V. P.  Volkov  M. V.  Egorov  A. V.  Senchenkov  A. S.  Filatov  I. G.  Noskov  A. I.  Shatokhin  S. M. 《Cosmic Research》2004,42(2):137-147
The results of experiments on the growth of InSb:Te by the floating zone melting in the Zona-4 setup during a flight of the Foton-3 satellite are discussed in comparison with the data on the microgravity situation typical for satellites of this type. When analyzing inhomogeneities in the crystals obtained, we reveal the frequencies corresponding to periodical variations of the impurity channel position (the facet effect), to interleaving of packs in which the growth layers are grouped, and to location of subgroups of the growth layers inside the packs. These frequencies are close to those discovered during measurements of low-frequency (quasistationary) microaccelerations (g) onboard the spacecraft Foton-8, Foton-10, Foton-11, and Foton-12. Calculated values of g at the place where the Zona-4 setup is installed confirm the possibility of impact of such g on the heat and mass transfer in the melt.  相似文献   

3.
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.

It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.

It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints.  相似文献   


4.
During evolution, life on earth had adapted to the gravity of 1g. Due to space flight, in the last decades the question arose what happens to the brain under microgravity on the molecular level. Ion channels among others are the molecular basis of brain function. Therefore, the investigation of ion channel function under microgravity seems to be a promising approach to gather knowledge on brain function during space flight. In a first step, the ion channel forming peptide Alamethicin was used as a model channel in an artificial membrane. It is well suitable for this kind of investigation, since its properties are well described under standard gravity. For that reason, changes due to microgravity can be detected easily. All experiments were performed in the German drop tower at ZARM-FAB, Bremen. A special set-up was constructed based on the bilayer technique introduced by Mueller and Rudin. All functions of this set-up can be observed and controlled remotely. In the first set of experiments, a dramatic change of electrical properties of Alamethicin under microgravity could be observed. Mainly, the pore frequency is significantly reduced.  相似文献   

5.
The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.  相似文献   

6.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

7.
Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 degrees head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 degrees upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alternating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.  相似文献   

8.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   

9.
Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut’s health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.  相似文献   

10.
Significant changes of thermogomeostatic parameters was obtained by thermotopometric method using the techniques simulate of microgravity effects: bed rest, pressurized isolation, suit immersion (SI). However, each of ground models made rectal temperature (T) trend downward. The autothermometric study (24 and 12 sessions, 2-13th and 6-174th flight days) was carried out onboard "Mir" by two flight engineers who had preliminary tested at SI (1-2 days). Studies of German investigators onboard "Mir" confirmed: rectal T must be higher in space flight as compared to the normal environment (n=4). Comparative studies suggest that microgravity is a key factor for the human body surface T raise and abolishment of the external/internal T-gradient. T-homeostasis was not really changing during missions and could be regarded as acute effect of microgravity. After delineation of changes in body surface T--by Carnot's thermodynamic law--rectal T raise should have been anticipated. Facts pointing to the excess entropy of human body must not be passed over.  相似文献   

11.
本文主要阐述利用高空气球落舱进行微重力环境模拟实验的可行性,工程系统的构成,系统控制时序以及试验结果。  相似文献   

12.
Background: Both microgravity and simulated microgravity models, such as the 45HDT (45 degrees head-down tilt), cause a redistribution of body fluids indicating a possible adaptive process to the microgravity stressor. Understanding the physiological processes that occur in microgravity is a first step to developing countermeasures to stop its harmful effects, i.e., (edema, motion sickness) during long-term space flights. Hypothesis: Because of the kidneys' functional role in the regulation of fluid volume in the body, it plays a key role in the body's adaptation to microgravity. Methods: Rats were injected intramuscularly with a radioactive tracer and then lightly anesthetized in order to facilitate their placement in the 45HDT position. They were then placed in the 45HDT position using a specially designed ramp (45HDT group) or prone position (control group) for an experimental time period of 1 h. During this period, the 99mTc-DTPA (technetium-labeled diethylenepentaacetate, MW=492 amu, physical half-life of 6.02 h) radioactive tracer clearance rate was determined by measuring gamma counts per minute. The kidneys were then fixed and sectioned for electron microscopy. A point counting method was used to quantitate intracellular spaces of the kidney proximal tubules. Results: 45HDT animals show a significantly (p=0.0001) increased area in the interstitial space of the proximal tubules. Conclusions: There are significant changes in the kidneys during a 1 h exposure to a simulated microgravity environment that consist primarily of anatomical alterations in the kidney proximal tubules. The kidneys also appear to respond differently to the initial periods of head-down tilt.  相似文献   

13.
Li GB  Liu YD  Wang GH  Song LR 《Acta Astronautica》2004,55(11):953-957
It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of glutathione [correction of gluathione], an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.  相似文献   

14.
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites).  相似文献   

15.
We present a hybrid algorithm to analyse complex interferograms with significant fringe deformations without an a-priori given zero-phase image containing the optical aberration of the instrument. Situations of this type frequently appear in fluid physics experiments using lateral shearing interferometers. The algorithm proposed employs a wavelet transformation in parallel with an approximation of the phase field directly after the experimental container is filled applying Zernike polynomials. As a result the aberrations of the interferometer can be described by a few coefficients. The subtraction of these phase aberrations can be traced back to a complex multiplication in the wavelet space which strongly reduces the effort of the phase unwrapping using the Goldstein algorithm. We explain the performance of the algorithm, which is not restricted to a particular interferometer type, by applying it to interferograms captured during a recent microgravity experiment.  相似文献   

16.
TY-3微重力火箭总长 6 0 0 0 mm,起飞质量 1 1 0 0 kg,有效载荷 5 0 kg,最大飞行高度 2 2 0 km,能提供 1 0 - 4 g约 36 0 s时间的微重力试验条件 ,该火箭已于 2 0 0 0年 1 0月飞行试验成功 ,而且一种更先进的微重力火箭系统正在设计中。  相似文献   

17.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   

18.
We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move “with” or “against” their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.  相似文献   

19.
Microgravity due to prolonged bed rest may cause changes in cerebral circulation, which is related to brain function. We evaluate the effect of simulated microgravity due to a 6° head-down tilt bed rest experiment on executive function among 12 healthy young men. Four kinds of psychoneurological tests—the table tapping test, the trail making test, the pointing test and losing at rock–paper–scissors—were performed on the baseline and on day 16 of the experiment. There was no significant difference in the results between the baseline and day 16 on all tests, which indicated that executive function was not impaired by the 16-day 6° head-down tilting bed rest. However, we cannot conclude that microgravity did not affect executive function because of the possible contribution of the following factors: (1) the timing of tests, (2) the learning effect, or (3) changes in psychophysiology that were too small to affect higher brain function.  相似文献   

20.
Perspectives of long-term space programs make it necessary to develop autonomous computer expert system for crew-members physical state control. The purpose of the work--to develop a set of objective formalizable physiological indices of working capacity suitable for reliable algorithmization of physical state control. Investigations were performed in on-earth microgravity simulation (3- and 7-day dry immersion, 6 subjects; 4-month antiorthostatic hypokinesy, 10 subjects) with volunteers' participation as well with 34 members of MIR-station expeditions during flights. Model exercise investigations were made also with 20 young male volunteers to evaluate the validity of different physical state indices. A set of indices was found which, being simple enough for measuring, performs to get satisfactory adequate evaluations of current organism physical state in long-term real or simulated microgravity. It was proved that some ergometric indices along with heart rate derivatives could reflect real working ability even better than traditional characteristics of organism energy systems state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号