首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进了商用有限元软件MARC的默认加载算法,超塑成形过程中改进的加载算法控制零件上应变速率最高的20个单元的平均值。对复杂形状的TC4盒形件超塑性成形过程进行了有限元模拟,获得了优化的压力p-时间t加载曲线和超塑成形零件的壁厚分布。根据加载曲线,进行了超塑成形实验,结果表明:模拟值与实验值吻合良好,且优化的加载曲线改善了成形零件的壁厚均匀性。  相似文献   

2.
利用有限元软件MSC.Marc2010对钛合金盒形件超塑成形过程进行了有限元模拟,控制目标应变速率,得到优化的压力-时间曲线,并据此进行实验研究,沿实验曲线分别加载至6个不同的标定压力值(分别为0.5,1.0,1.5,2.0,2.3和2.5MPa)得到成形过程中的零件。测量6个实验零件的外形轮廓和厚度,并分别与相对应的模拟结果进行对比,验证实验与模拟的一致性,并分析整个成形过程中的材料流动规律,得出在自由胀形、底部贴模、充填圆角3阶段盒形件不同区域的应力、应变和变薄率分布,为复杂零件的超塑成形工艺的制定奠定了一定的理论基础。  相似文献   

3.
为了解决恒温超塑性成形工艺效率低的问题,本文提出了一种升温超塑性成形的新工艺方法,并用模糊神经网络对升温超塑性胀形成形的工艺参数进行优化,得出了优化后的TC4钛合金升温超塑性胀形成形工艺的加载曲线,利用优化后的成形工艺参数进行了某航空器用TC4钛合金薄板盒形件的升温超塑性胀形成形试验。试验结果表明:与恒温超塑性成形相比,此工艺可以显著地缩短成形时间,在本文试验条件下每个零件可以缩短成形时间10min,并可改善材料的成形性,获得厚度分布均匀(厚度分布不均匀率〈8%)的成形零件。基于模糊神经网络方法进行成形工艺参数优化的升温超塑性成形方法可在实际生产中应用。  相似文献   

4.
Ti-15V-3Cr-3Sn-3Al合金是一种在航空航天工业领域具有广泛应用前景的亚稳定β型钛合金。本文用恒应变速率法进行实验,测试Ti-15-3板材的超塑性,为超塑成形提供参考依据。  相似文献   

5.
从非定常Euler方程出发,用高精度高分辨率的TVD格式,对圆柱形空腔内的气云爆炸波对壁面作用问题进行了数值模拟。计算获得圆柱形空腔内气云爆炸场的复杂的波系结构及其演化过程、壁面任意指定点的压力时间曲线。本文还给出了同体积、不同形状的气云爆炸对壁面的作用效应。  相似文献   

6.
为了借助计算机分析和模拟复杂的超塑成形过程,本文提出了一个用于测定超塑性金属材料参数m和K的等胀形高度法,并在文中推导了与该法相关的公式.通过应用在模拟薄板超塑胀形过程中的计算实例,证明该法的 精度是令人满意的.  相似文献   

7.
在实际中,严格的等距算子是不存在的,所遇到的都是有误差的几乎等距算子,故研究几乎等距算子被等距算子所逼近是有意义的。本文主要得到以下的结果:设T是从Banach空间(E(2),Lr)到L^1[0,1]的ε-等距算子(即对任意的P∈(E01,Lr)'T满足:(1-ε)Lr(P)≤‖T(P)‖≤(1+ε)Lr(P),Lr(P)表示P的范数那么对任意的P∈(E(2),Lr),一定存在一个等距算子V∈B(  相似文献   

8.
锻件成形过程中,非稳态、不均匀的温度场对金属的塑性流动有很大的影响,尤其是高温成形过程。本文对轴对称段件成形过程的热力耦合有限元分析技术进行了研究。论述了刚塑性有限元分析方法,建立了热力耦合分析模型,开发了轴对称锻件成形过程的热力耦合有限元分析软件。通过将圆柱体镦粗过程的模拟结果与有关文献中的实验结果和模拟结果的比较,说明了该方法和软件的正确性。  相似文献   

9.
在1350~1550℃下,对3mol%Y2O3稳定的四方ZrO2多晶陶瓷(Y-TZP)进行了超塑性拉伸试验,最大延伸率达285%。研究了拉伸变形特性,测定了1460℃下的应变速率敏感性指数m=0.37。扫描电镜、透射电镜和X射线衍射仪研究表明;Y元素在晶界处偏析;超塑变形时晶粒明显长大;变形促进了四方相(t)→单斜相(m)ZrO2的马氏体转变,其相位关系为(100)m∥(100)t;,[001]m∥[001]t,αm^αt=9.3°,m-ZrO2呈板条状。X射线光电子谱(XPS)结果说明:晶界玻璃相不是陶瓷超塑性变形的先决条件。  相似文献   

10.
GH150合金钢缝焊接头的疲劳寿命研究   总被引:1,自引:0,他引:1  
为了研究发动机焊接机匣的疲劳寿命,本文根据发动机机匣的特点,设计了焊接试件,对GH150高温合金钢缝焊搭接接头的疲劳性能进行了测试,并用数理统计方法得到S-N曲线和P-S-N曲线,及其缝焊接头的疲劳强度降低系数和疲劳寿命分散系数。研究结果表明,GH150合金钢虽静强度很高,但缝焊接头的疲劳强度极低,而缝焊接头的疲劳寿命分散系数较小  相似文献   

11.
应用网格编码调幅(TC-AM)分析BPSK和π/4-QPSK调制下接收机的码间串扰特性。通过计算TC-AM的修正生成函数和重量轮廓函数,得出了两种调制在最大似然译码意义下的比特误码率,并给出了π/4-QPSK调制下的数值结果。  相似文献   

12.
采用塑性流动理论,薄壳无力矩理论及幂函数强化模型,对求解轴对称塑性平面应力问题的数值参数法作了进一步的研究,推导出成形力学分析的一阶微分方程组,在此基础上,将该微分方程相应用于薄壁圆管轴压外翻成形的稳态流动分析,计算时采用了四阶龙格库塔法,并获得了应力,应数值解,本文通过大量的计算,分析了边界条件对计算结果的影响,并将理论计算结果与实验作了比较。研究结果表明,轴对称塑性平面应力问题可以转换为一阶常  相似文献   

13.
本文对金属板材TC_4钛合金在860℃高温下的超塑性胀形工艺作了力学分析,得出其各项参数变化规律,给出最佳加载的压力-时间变化曲线。用微处理机控制气压变化,使整个胀形过程中应变速率恒定,板材始终处于最佳超塑性变形状态。对不同材料的板坯,只要输入该材料的应变速率敏感指数和最佳应变速率等参数,就可自动实现各种材料最佳超塑胀形,获得壁厚均匀的良好制品。  相似文献   

14.
基于超塑性材料高温扩散蠕变、晶界滑移、孔洞闭合、界面再结晶机理,研究SPF/DB组合工艺的数值模拟,用非线性有限元数值模拟超塑成形和预测厚度变薄率,将有限元结果作为加载条件,计算扩散焊接焊合率和预测焊接强度,计算结果与3维实验数据曲面比较,吻合良好。  相似文献   

15.
在1 350 ̄1 550℃下,对3mol%Y2O3稳定的四方ZrO2多晶陶瓷(Y-ZTP)进行了超塑性拉伸试验,最大延伸率达285%。研究了拉伸变形特性,测定了1 450℃下的应变速率敏感性指数m=0.37。扫描电镜、透射电镜和X射线衍射仪研究表明:Y元素在晶界处偏析;超塑变形时晶粒明显长大;变形促进了四方相(t)→单斜相(m)ZrO2的马氏体转变,其相位关系为(100)m〃(100)t,「001  相似文献   

16.
采用SPF/DB工艺成形的翼类构件,内部结构不仅影响其力学性能,同时决定SPF/DB工艺的可行性。翼类构件在应用SPF/DB工艺成形过程中,内部夹层扩散焊接焊缝处形成筋条,从而增强结构强度,因此中间夹层扩散焊接筋条分布决定了成形后构件内部结构。本文利用有限元软件ABAQUS6.8对不同内部结构的某翼类构件进行静力学分析及超塑成形的数值模拟,得到既满足强度要求又有利于SPF/DB工艺要求的内部结构。  相似文献   

17.
二维等幅加上疲劳可靠性分析P—Sa—Sm—N曲面族   总被引:1,自引:1,他引:1  
本文由等幅疲劳三参数P-S-N曲线族方程和寿命曲线方程,建立了便于工程应用的等疲劳P-Sa-Sm-N曲面族方程,并且十分明显地给出了其成立的力学及概率统计前提;根据Weibull对个体S-N曲线所做的单调降和不相交两大假设,用测度论证明了在P-Sa-Sm-N曲面族上,等幅疲劳寿命(N/(Sa,Sm),N/R,Sa),N/(R,Sm))与等度疲劳强度(Sa/(N,Sm),Sm/(N,Sa))所构成的  相似文献   

18.
区域法数值模拟短突扩压器流场   总被引:1,自引:1,他引:1  
在一般曲线坐标下对环形燃烧室突扩压器和其内外环通道流场进行了数值模拟。紊流特征有用工程上常用的κ-ε双方程模型来描述,使用壁面函数法处理曲线壁面边界,采用非交错网格系统和SIMPLE算法求解各守恒方程。为了计算方便,利用区域法对复杂的流道进行分块处理,计算所得的速度和压力分布较为合理,表明本方法是可行的。  相似文献   

19.
运用张量分析理论,比较简捷地导出了三维任意曲线坐系上椭圆型N-S方程的通用形式。在对这些方程进行数值离散时,采用了有限控制体积的非交错风格设置,该算法双SIMPLE为基础,为了抑制压力振荡场的了出现,在压力修正方程中对压力梯度的离散附加一项1-δx的差分。作为算例,本文给出了三维90°强曲率弯曲管道中气流的不可压缩紊流状态的数值计算结果,并与相关的实验数据进行了对比,结果是满意的。  相似文献   

20.
本文根据塑性变形下的应力-应变关系,提出用应变片电测法来求出塑性应力的专用材料图解法。它比国内外现有的图解法具有制图简单、图线规则、使用方便的优点。本文还讨论了根据原材料的应力-应变曲线和横向应变-纵向应变曲线,对于加工后屈服极限改变的构件材料,通过对它的应变进行实测,推算出测量处材料的修正应力-应变曲线的方法,使在实际构件的塑性应力实验分析中所采用的应力-应变模型,接近于真实情况,从而减少计算误差,具有一定的实用意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号