共查询到20条相似文献,搜索用时 0 毫秒
1.
R. L. Fergason P. R. Christensen M. P. Golombek T. J. Parker 《Space Science Reviews》2012,170(1-4):739-773
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar. 相似文献
2.
3.
Mars Science Laboratory Mission and Science Investigation 总被引:5,自引:0,他引:5
John P. Grotzinger Joy Crisp Ashwin R. Vasavada Robert C. Anderson Charles J. Baker Robert Barry David F. Blake Pamela Conrad Kenneth S. Edgett Bobak Ferdowski Ralf Gellert John B. Gilbert Matt Golombek Javier Gómez-Elvira Donald M. Hassler Louise Jandura Maxim Litvak Paul Mahaffy Justin Maki Michael Meyer Michael C. Malin Igor Mitrofanov John J. Simmonds David Vaniman Richard V. Welch Roger C. Wiens 《Space Science Reviews》2012,170(1-4):5-56
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. 相似文献
4.
介绍了民用飞机结构工作包的维修任务来源,给出了结构工作包的直接维修成本预计方法,明确了进行预计的数据流,并结合案例介绍了本预计方法的有效性。 相似文献
5.
6.
ARTEMIS Science Objectives 总被引:1,自引:0,他引:1
D. G. Sibeck V. Angelopoulos D. A. Brain G. T. Delory J. P. Eastwood W. M. Farrell R. E. Grimm J. S. Halekas H. Hasegawa P. Hellinger K. K. Khurana R. J. Lillis M. ?ieroset T.-D. Phan J. Raeder C. T. Russell D. Schriver J. A. Slavin P. M. Travnicek J. M. Weygand 《Space Science Reviews》2011,165(1-4):59-91
NASA??s two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth??s magnetotail; reconnection, particle acceleration, and turbulence in the Earth??s magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives. 相似文献
7.
Giovanni F. Bignami 《Space Science Reviews》1989,49(1-2):179-183
The GRASP mission — Gamma Ray Astronomy with Spectroscopy and Positioning — is currently under assessment by ESA as a future space astronomy mission. The GRASP telescope will be the first high-resolution spectral imager to operate in the gamma-ray region of the spectrum. This, coupled with its high sensitivity, will enable GRASP to address many basic questions related to the physics of celestial objects thus offering a major step forward in high-energy astrophysics. 相似文献
8.
一个面向5轴曲面加工的实时NURBS曲面插补器 总被引:2,自引:3,他引:2
提出了一个实时非均匀有理B样条(NURBS)曲面插补器,论述了5轴平头刀加工方法运用Taylor展开和坐标变换方法分别推导并实现了NURBS插补、刀具有效加工半径、刀具补偿以及逆运动变换等算法。与传统自由曲面加工不同的是,所提出的插补器能根据刀触点进给率而非刀位点进给率实时生成计算机数控(CNC)机床运动指令。对实例零件曲面进行演示与仿真分析结果表明该曲面插补器可以应用于5轴曲面加工中。 相似文献
9.
工作流互操作问题的元模型“活动”包研究 总被引:1,自引:0,他引:1
随着工作流系统广泛被采用,互操作问题的研究也显得日益迫切与重要.本文在前人的工作的基础上通过基于MOF体系标准的建模实现一个名为WfMM的工作流元模型原型,为互操作问题的解决提出另一种可行的方案.本文详细描述了这一方式的可行性,并设计构造了这一原型的一个部分--"活动"元模型包.描述了其相应的XMI映射的方法与实现. 相似文献
10.
Aymeric Spiga Don Banfield Nicholas A. Teanby François Forget Antoine Lucas Balthasar Kenda Jose Antonio Rodriguez Manfredi Rudolf Widmer-Schnidrig Naomi Murdoch Mark T. Lemmon Raphaël F. Garcia Léo Martire Özgür Karatekin Sébastien Le Maistre Bart Van Hove Véronique Dehant Philippe Lognonné Nils Mueller Ralph Lorenz David Mimoun Sébastien Rodriguez Éric Beucler Ingrid Daubar Matthew P. Golombek Tanguy Bertrand Yasuhiro Nishikawa Ehouarn Millour Lucie Rolland Quentin Brissaud Taichi Kawamura Antoine Mocquet Roland Martin John Clinton Éléonore Stutzmann Tilman Spohn Suzanne Smrekar William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars. 相似文献
11.
The Advanced Composition Explorer (ACE) mission is supported by the ACE Science Center for the purposes of processing and distributing ACE data, and facilitating collaborative work on the data by instrument investigators and by the space physics community at large. The Science Center will strive to ensure that the data are properly archived and easily available. In particular, it is intended that use of a centralized science facility will guarantee appropriate use of data formatting standards, thus easing access to the data, will improve communications within and to the ACE science working team, and will reduce redundant effort in data processing. Secondary functions performed by the Science Center include acting as an interface between the scientists and the mission operations team. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
12.
13.
Mars is unique to have undergone all planetary evolutionary steps, without global resets, till its geological death: this is reflected in the variety of its surface features. The determination of Mars surface composition has thus the potential to identify the processes responsible for the entire Mars evolution, from geological timescales to seasonal variations. Due to technical challenges, only few investigations have been performed so far. They are summarized in this paper, and their interpretation is discussed in terms of surface materials (minerals, ices and frosts). 相似文献
14.
15.
The NEAR (Near Earth Asteroid Rendezvous) Science Data Center (SDC) serves as the central site for common data processing activities needed by the NEAR science teams in particular and the scientific community in general. The SDC provides instrument and spacecraft data to the science teams from around the world and redistributes science products produced by those teams, all the science teams to focus on analysis. This data and the accompanying documentation are available at 'http://sd-www.jhuapl.edu/NEAR/'. In addition the SDC is responsible for archiving spacecraft, instrument, and science data to the Planetary Data System (PDS). 相似文献
16.
The mission of the SRC is to (1) enhance the competitiveness of the U.S. semiconductor industry through the support of university and institutional research and education, personnel training and the development of skills required by industry, and the identification of key industry/government issues with recommendations for appropriate university research and/or independent industry/government response. Emphasis is on a core program that is directed to (1) the creation and maintenance of a generic research base in integrated circuit technologies in the U.S. university community, (2) ensuring a continuing supply of highly qualified students to support the growth and continuing innovation within the industry (and the faculty required to educate them), and (3) the broadening of the U.S. university base of microelectronics research and education through establishment of centers of excellence, seeding of new efforts, and development of new curricula. 相似文献
17.
The Juno Gravity Science Instrument 总被引:1,自引:0,他引:1
Sami W. Asmar Scott J. Bolton Dustin R. Buccino Timothy P. Cornish William M. Folkner Roberto Formaro Luciano Iess Andre P. Jongeling Dorothy K. Lewis Anthony P. Mittskus Ryan Mukai Lorenzo Simone 《Space Science Reviews》2017,213(1-4):205-218
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path. 相似文献
18.
Helene L. Winters Deborah L. Domingue Teck H. Choo Raymond Espiritu Christopher Hash Erick Malaret Alan A. Mick Joseph P. Skura Joshua Steele 《Space Science Reviews》2007,131(1-4):601-623
The MESSENGER Science Operations Center (SOC) is an integrated set of subsystems and personnel whose purpose is to obtain,
provide, and preserve the scientific measurements and analysis that fulfill the objectives of the MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER) mission. The SOC has two main functional areas. The first is to facilitate science instrument
planning and operational activities, including related spacecraft guidance and control operations, and to work closely with
the Mission Operations Center to implement those plans. The second functional area, data management and analysis, involves
the receipt of science-related telemetry, reformatting and cataloging this telemetry and related ancillary information, retaining
the science data for use by the MESSENGER Science Team, and preparing data archives for delivery to the Planetary Data System;
and the provision of operational assistance to the instrument and science teams in executing their algorithms and generating
higher-level data products. 相似文献
19.
20.
正刘峰LIU Feng长江学者特聘教授Chang Jiang Scholar国家杰出青年科学基金获得者Winner of the National Science Fund for Distinguished Young Scientists西北工业大学教授,博士生导师,德国洪堡学者,中国科协全国委员。国家杰出青年科学基金获得者,教育部长江学者特聘教授,中组部万人计划科技创新领军人才;百千万人才工程国家级人选,入选中青年科技创新领军人才推进计划;获中国青年科技奖,享受国务院政府特殊津贴。主要研究方向为非平衡凝固理论与技术;固态相变动力学理论;相变热力学动力学相关性、先进亚稳(钢铁、铝镁合金、纳米)材料研究;先进金属功能材料等。获陕西省科学技术一等奖1项、二等奖2项。发表SCI论文280余篇,包括本领域顶级期刊Acta Materialia 30余篇以及3篇Inter.Mater.Rev.综述。 相似文献