首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
提出了军用航空再制造发动机的概念、制造要求和相关标准。因此,普通发动机的大部分概念与标准对航空再制造发动机同样适用,本课题仅讨论与普通航空发动机不一致的概念和标准。  相似文献   

2.
<正>低塑性抛光技术可以在传统的机械加工车间环境中,在原始的制造阶段或大修及修理过程中,采用传统的CNC机床较低成本地完成。因而,它具有广阔的发展和应用前景。根据有关统计,大约有80%以上的结构强度破坏是由疲劳破坏造成的。而航空发动机零件由疲劳破坏造成的失效所占比例更大。航空发动机零件失效,大多数因强度失  相似文献   

3.
就产品失效后再制造难的问题,以多寿命周期理论为指导,归纳出面向产品绿色再制造的多重需求要素,并结合熵权法和AHP确定其权重;在探讨需求转换和冲突解决的基础上,形成基于QFD和TRIZ的面向主动再制造的产品需求分析模型。以某型航空发动机涡轮叶片的需求分析为例说明了此模型对产品绿色再制造的可持续设计质量的改进作用。  相似文献   

4.
航空发动机损伤叶片再制造修复方法与实现   总被引:2,自引:0,他引:2  
王浩  王立文  王涛  丁华鹏 《航空学报》2016,37(3):1036-1048
航空发动机叶片长期工作在高温、高压和高速的环境下,极易出现损伤。但是,损伤叶片的再制造修复技术一直被国外垄断,国内航空公司不得不花费大量的资金和时间将受损叶片送往国外维修。针对此问题,提出一种航空发动机损伤叶片再制造修复方法。首先,对损伤叶片进行失效特征分析,评价修复可行性;其次,获取并处理叶片点云数据,提取叶片截面的边界曲线,重建叶片数字化模型,通过布尔运算得到加工目标模型;再次,采用激光熔覆和自适应加工方法,对损伤叶片进行再制造修复;最后,分别对叶片三维数字化模型与实物进行精度检测和误差分析。结果表明,利用该方法建立的叶片数字化模型具有较好的精度和光顺性,再制造修复误差满足发动机维修手册的要求。  相似文献   

5.
热障涂层(TBCs)技术是降低燃气轮机热端部件表面温度、防止高温腐蚀、实现更高推重比的有效途径,但如果涂层失效,将会影响航空发动机使用的安全性。本文首先介绍了 TBCs 的成分结构,其次总结了冲蚀与外物损伤、烧结氧化、腐蚀三种常见的热障涂层破坏形式,然后阐述了国内外现阶段对破损或失效涂层的修复及再制造方法,最后针对如何抑制裂纹形成和扩展,提高热障涂层可靠性的问题进行了展望。  相似文献   

6.
如果说航空发动机是飞机的心脏,那么叶片就是发动机心脏中的关键组成部分。叶片是航空发动机中非常关键的一类典型零件,具有种类多、数量大、形面复杂、几何精度要求高等特点。在航空发动机零件中,叶片是寿命较短的零件,因此发动机叶片的制造品质直接影响到发动机性能与寿命。在现代战争条件下,对于航空发动机的零部件制造效率和制造质量提出较高要求,其中叶片作为发动机中数量最大的一类零件,其制造效率直接影响发动机整体制造效率,而叶片的制造品质直接影响到发动机性能与寿命。对叶片加工采用数字化技术,已成为当今世界发动机叶片制造手段的潮流与方向[1-5]。  相似文献   

7.
为了实现航空发动机上外调节片等重要零件的再制造,对其所用材料BT20钛合金进行组织分析,采用计算法和连续升温金相法研究了BT20钛合金的相变点,为航空发动机零部件的再制造修理提供参考。  相似文献   

8.
<正>在广泛的加工领域,尤其是上述航空难加工材料复杂构件的制造领域,高可靠性制造技术是航空发动机关键构件加工过程中的重要的技术保障,其先进性对相应工业领域的发展及产品的竞争优势起着举足轻重的作用。长寿命、高可靠性是航空航天产品的基本要求,长寿命、高可靠性制造是我国航空航天制造业急需突破的关键技术。据统计,航空事故中疲劳失效占80%以上[1],造成疲劳失效的主要原因是制造表面缺陷和质量一致性差。长寿命、高可靠性制  相似文献   

9.
陈礼顺  李思路  程礼  杨武奎 《航空学报》2018,39(6):421856-421856
锥齿轮是航空发动机传动系统中的重要组成部分,在使用过程中容易产生齿面磨损、齿面点蚀、齿面剥落、齿面胶合等故障。文中分析了锥齿轮故障原因及再制造可行性,构建了锥齿轮的再制造判别标准,制订了以齿廓修形技术为核心的锥齿轮再制造工艺方法。通过检测渗碳层深度、硬度,试验验证,齿轮装配检查,台架试车考核表明:再制造的锥齿轮渗碳层深度、显微硬度符合设计要求,齿轮啮合间隙、着色印痕以及试车后齿面金属印痕均符合技术要求,装机试用的锥齿轮传动平稳,啮合性能好,产生的振动和噪声小。再制造成本仅为新品的11.3%,节能效果为86%,节材78%,取得了显著的经济和社会效益,具有广阔的应用前景。  相似文献   

10.
绿色再制造工程——21世纪的重要产业   总被引:14,自引:0,他引:14  
为实现 2 1世纪可持续发展战略 ,提出了通过绿色再制造工程尽可能减少失效和报废产品对环境的危害 ,最大限度地利用报废产品零部件的发展模式。论述了再制造工程的定义、作用以及应用前景。  相似文献   

11.
喷射成形技术正在很快成为制造飞机发动机镍铝超级合金零件的一种最具成本 -效益的可靠方法。这种技术采用很细的金属合金雾滴制造零件 ,在许多情况下用这种方法制造的零件比传统方法制造的零件更坚固 ,更有韧性。在加工时采用氩气或氮气使金属呈雾状 ,形成液滴 (10~ 50 0 μm) ,然后通过锥形喷流沉积在预成形件的表面。添加陶瓷颗粒 (5~ 15μm碳化硅 )转换合金涂层以形成金属基复合材料。该工艺特别适于制造发动机环和外壳等零件 ,在某些情况下比传统制造方法降低生产成本 30 %。随着飞机发动机体积增大 ,通过传统方法制造令人满意的、…  相似文献   

12.
作为绿色设计、绿色制造技术的重要组成部分,再制造工程有着广阔的产业前景,在减少自然资源的消耗、节约材料、减少环境污染等方面有着重要的意义,符合可持续发展战略的要求.特别是军用产品,更加要重视和加强再制造工程相关理论和技术的基础研究.  相似文献   

13.
基于激光增材制造技术可快速、精确地制造出任意复杂形状零件的特点,以带复杂冷却内腔结构的航空发动机涡轮叶片为研究对象,对激光增材制造技术在涡轮叶片制备过程中的工程应用特点和难点进行了研究,并提出相应解决措施。研究结果显示,激光增材制造技术在降低零件制造成本和减少零件交货周期方面具有显著优势,但在材料力学性能、表面粗糙度、位置及型面公差、气膜孔收缩率及机械加工定位点等方面依然存在挑战。  相似文献   

14.
再制造是国外新兴的产业领域 ,是具有重大实用价值和优质、高效、少污染的绿色技术 ,因此也称其为绿色再制造。本文介绍了再制造的概念、发展概况及发展再制造工程的意义。  相似文献   

15.
针对某型涡扇发动机高压压气机转子叶片叶尖磨损故障,采用3D打印再制造技术进行修复。研究表明,采用3D打印再制造技术可实现该转子叶片的叶尖修复,解决了叶尖修理极限确定、逐层堆积过程中成形困难和复杂型面净近成形等难题。  相似文献   

16.
自适应加工技术在整体叶盘制造中的应用   总被引:1,自引:0,他引:1  
自适应加工技术通过数控加工过程中加工区域提取、工件装夹定位、余量优化和变形误差的自适应控制,实现大飞机发动机整体叶盘的高效精密加工.它不仅能应用于整体叶盘复合制造工艺流程中的精密数控加工,还适合于叶盘、叶片类零件的修复及再制造加工,同时也是提高传统粗加工-半精加工-精加工效率和精度的有效方法.  相似文献   

17.
航空发动机零部件的抗疲劳制造技术   总被引:2,自引:0,他引:2  
航空发动机制造技术是航空工业的关键技术,传统的航空发动机制造技术是以制造成本、时间、空间等为依据,通过工艺控制,形成满足要求的表面特征的制造技术.它关注的是表面机加工形位、表面形貌、表面裂纹等特征,考虑的是低成本、高效率、高精度,对发动机的寿命和可靠性方面关注不足,满足不了航空结构的轻量化、高可靠性要求.  相似文献   

18.
电刷镀再制造技术快速修复缺陷零件应用研究   总被引:1,自引:0,他引:1  
电刷镀技术是快速修复缺陷零件的重要手段,在再制造工程中得到了广泛应用。详细介绍电刷镀技术的基本原理、工艺过程及应用情况。以某管梁轴套结构零件的修复为实例,探讨了电刷镀技术对带有沟槽划伤铝合金的填充修复工艺及35Cr2N i4MoA(D)高强度钢n-A l2O3/N i-Cr复合镀层实施工艺。试验结果表明电刷镀技术对铝合金及35Cr2N i4MoA(D)高强度钢的修复快速、简便,镀层硬度、结合力及耐磨性等性能都符合要求。  相似文献   

19.
航空发动机是为航空装备提供动力的装置,维修保障是保障发动机完成服役周期的重要阶段。随着航空发动机维修产业的不断发展,为满足未来大批量、高质量、高效率的维修需求,发动机维修技术也在不断提升和发展。本文简要介绍了航空发动机维修发展历史;从故障检查、整机清洗和整机装配三个方面综述了航空发动机整机维修技术的研究进展,从再制造发展、关键技术和技术开发流程三个方面阐述了航空发动机再制造进展;并对航空发动机维修和再制造技术的未来发展进行了展望。  相似文献   

20.
增材制造技术在航空发动机中的应用   总被引:1,自引:0,他引:1  
受制于传统制造工艺,航空发动机零件多年来一直存在制造成本高、周期长、减重困难、设计空间有限的问题。与传统制造工艺相比,增材制造技术具有明显的优势。本文阐述了增材制造技术在直接制造和零件修复领域的应用,分析指出了该技术在航空发动机领域的广阔前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号