首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高超声速风洞是研究高超声速空气动力学关键问题的重要手段,但是常规高超声速风洞建设和运行成本偏高,不利于深入开展高超声速飞行器部分空气动力学基础问题研究。本文以低成本研究型高超声速风洞设计为目标,基于Ludwieg管设计原理,开展了Φ0.5 m口径马赫数6高超声速Ludwieg管的气动设计。首先采用数值手段对储气段、快开阀以及Laval喷管设计进行了分析,重点关注了采用弯曲储气段的Ludwieg管风洞非定常启动过程,之后使用皮托耙和皮托管等对风洞实验段的自由来流进行了初步校测。结果表明,采用快开阀主控的Ludwieg管高超声速风洞可以获得良好的流动品质,弯曲储气段虽然会影响膨胀波系的传播强度,但对其传播速度以及风洞的流场品质影响不大;风洞初步校测的数据显示,该风洞的来流马赫数分布品质优良,且来流压力脉动幅值低于德国与美国同类管风洞。该研究为设计低成本、大口径、研究型高超声速风洞提供了参考,可服务于高超声速空气动力学关键气动问题的实验研究。  相似文献   

2.
本文介绍用低超声速喷管代替声速喷管,解决了大迎角大堵塞度跨声速实验时的风洞壅塞问题。低超声速喷管可以在大堵塞的实验条件下,形成稳定的低超声速流场,消除风洞在大堵塞度实验时的马赫数空白区,从而使风洞的允许实验迎角和堵塞度范围增加一倍,并且能确保流场达到使用指标。模型实验结果和同一尺寸的模型在口径大一倍风洞中实验结果基本重合。  相似文献   

3.
基于激波风洞的超声速磁流体动力技术实验系统   总被引:9,自引:1,他引:9  
李益文  李应红  张百灵  金迪  陈峰  朱涛 《航空学报》2011,32(6):1015-1024
开展磁流体(MHD)动力技术实验研究,实验系统必须满足两项基本的条件:一是超声速或高超声速气流;二是气流必须是导电流体.基于此,介绍了基于激波风洞的超声速磁流体动力技术实验系统的基本组成、设计思想和调试情况.设计了马赫数Ma=2的超声速喷管及实验段;采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入...  相似文献   

4.
高超声速边界层转捩实验综述   总被引:6,自引:0,他引:6  
高超声速边界层转捩直接影响飞行器表面的摩擦系数与热流分布,对于高超声速飞行器的气动布局以及热防护设计至关重要。尽管高超声速边界层层/湍流转捩的相关研究已经开展长达半个多世纪,但是由于高超声速流动的复杂性以及触发转捩的因素繁多,研究人员对于转捩过程的认识并不透彻,阻碍了先进高超声速飞行器的设计。地面风洞实验作为高超声速空气动力学设计的重要手段之一,在可预见的将来仍是研究高超声速边界层转捩不可或缺的方法。本文以高超声速边界层稳定性与转捩的风洞实验为重点,按照边界层自然转捩的发展过程,分别回顾了国内外在边界层感受性问题以及线性化阶段风洞实验研究的现状,文章最后总结了风洞实验在未来高超声速边界层转捩研究中的工作与意义,并针对未来的实验研究给出了几点建议。  相似文献   

5.
用于跨声速气动测量的探针须从亚声速到超声速范围进行标定。变质量槽式喷管通过扩张段壁面上槽缝流出部分气流的自适应特性可在不同背压下得到不同出口马赫数,从而使标定气动探针的风洞实现马赫数从0到超声速的连续变化。为了研究采用湿蒸汽为工质的变质量槽式喷管的性能及优化其结构,采用三维犖-犛方程以及可实现犽-ε湍流模型对其进行了详细的数值仿真。结果表明收缩段型线、扩张段长度及壁槽尺寸等对喷管流场特性有重要影响,喷管进出口压比在一定范围内,槽式喷管有最优的收缩段型线、扩张段长度和开槽尺寸。根据数值仿真结果研制了马赫数从0到1.6连续可变的跨声速湿蒸汽风洞,对此风洞性能进行验证,表明该风洞在马赫数从零到超声速范围内可获得均匀、稳定的出口气流,满足跨声速湿蒸汽气动探针的标定要求。  相似文献   

6.
针对气流粉碎机上超声速喷管的使用特点,根据超声速风洞喷管设计的一般原理以及三元特征线理论和边界层修正的理论,提出了一种实用的三元轴对称超声速喷管的设计方法。本方法对收缩段,扩张段分别进行设计。根据设计制成样品进行吹风实验,采用测量出口静压的方法来间接测量出口马赫数。实验表明实验结果与理论计算能够较好的吻合。  相似文献   

7.
伍军  李向东  蒲旭阳  毛雄兵  青龙 《推进技术》2022,43(10):363-369
为建立统一的燃烧加热类高超声速高温风洞流场品质评价标准,针对国内6座不同喷管出口直径的燃烧加热类高超声速高温风洞,从统一的皮托压探针、总温探针和流场校测排架设计出发,分别研制了流场校测装置,完成了典型试验状态的流场校测试验。根据相同的数据处理和分析方法得到了相关风洞喷管出口截面的速度场、温度场及均匀区信息。6座风洞速度场均匀区直径分别对应喷管出口直径的73.3%、76.5%、75.0%、80.0%、74.7%、83.3%。根据各风洞流场校测结果,初步掌握了国内同类型风洞流场品质整体水平,提出了当前燃烧加热类高超声速高温风洞流场品质参考评价指标。对于马赫数4.5~6.0的试验状态,风洞速度场均匀区直径应不小于喷管出口直径的70%,均匀区内马赫数标准偏差与平均马赫数的比值应小于2%,总温标准偏差与平均总温的比值应小于5%。  相似文献   

8.
为了开展飞行马赫数8和9的超燃冲压发动机直连式试验研究,将中国空气动力研究与发展中心的FD-14激波风洞改造成了激波加热超声速燃烧室直连式试验台。设计了两组喷管,喷管出口马赫数为3.5和4.5,分别用于模拟飞行马赫数8和9的超燃冲压发动机燃烧室入口气流条件。采用Park、Gupta、Dunn/Kang三种纯空气化学反应动力学模型,对马赫数3.5及马赫数4.5喷管中的化学非平衡流动进行了数值模拟研究,并对三种纯空气化学反应模型进行了比较分析。研究结果表明:在喷管收缩段,N_2和O_2的离解效应显著,而在喷管扩张段,N原子和O原子的复合效应更加显著;马赫数3.5及马赫数4.5喷管出口的NO摩尔分数分别为2.3%~2.57%和4.8%~6.0%,O原子摩尔分数分别为0.04%~0.11%和0.75%~1.25%,N原子摩尔分数几乎为零;在喷管扩张段,流动为典型的"冻结流";三种化学反应模型中,采用Gupta模型时O_2和N_2的离解程度最大,相应生成的NO及O原子含量更高,但是三个反应模型计算获得的各个组分在喷管内部及喷管出口截面的分布规律是一致的。  相似文献   

9.
超声速短化喷管的设计与实验研究   总被引:3,自引:0,他引:3  
利用Bézier曲线构造轴向马赫数分布,采用特征线方法计算喷管壁面型线,结合跨声速理论,提出了一种实用的短化喷管设计方法。对设计制成的喷管进行流场校测,并与数值模拟的结果进行比较分析,结果表明:喷管内部膨胀均匀,出口流场品质很好,可用于超声速风洞以及其它对流场品质有较高要求的应用场合。  相似文献   

10.
在FL-26y风洞中利用M1.4喷管和开孔壁试验段进行了实现低超声速流场的实验研究工作。通过实验研究验证了利用M1.4喷管在开孔壁试验段上建立起的低超声速流场的流场品质能够满足国军标合格指标的要求。实验还考察了不同稳定段总压、驻室抽气量等开车参数以及不同试验段扩开角、主流引射缝开度和开孔壁开孔率等洞体条件对流场的影响,为2.4m×2.4m跨声速风洞增设M1.4喷管,拓展该风洞试验马赫数的范围,使其具备M1.4的低超声速试验能力提供了技术支持,同时也为该风洞在下一阶段正式开展M1.4流场调试提供了可供参考的调试参数。  相似文献   

11.
通过求解轴对称 N-S 方程,对Φ1 m 高超声速风洞马赫数3和6状态下的流场进行了模拟,计算结果与试验数据基本一致,验证了所用数值方法的可信性。在此基础上,对比研究了马赫数3和6状态下采用闭口等直圆截面和开口自由射流两种试验段结构形式的超声速/高超声速风洞在起动条件下的稳态流场性能。结果表明:采用闭口等直圆截面试验段和开口自由射流试验段的流场均匀区内速度场性能指标均满足相关标准要求;马赫数3喷管采用闭口试验段时,沿风洞轴向-300mm-900mm 截面范围内的流场均匀区直径均保持在Φ882mm 以上,均匀区面积较开口试验段增加了约31.57%;马赫数6喷管采用闭口试验段时,均匀区面积比开口试验段仅增加了约8.24%,流场品质略为提高。超声速条件下,闭口试验段的流场均匀区增加明显;但在高超声速条件下,闭口试验段的流场均匀区增加比较有限。  相似文献   

12.
一种新运行方式脉冲燃烧风洞研制及初步应用   总被引:3,自引:0,他引:3  
介绍了一座喷管口径为600mm、利用氢与富氧空气混合燃烧产生高焓试验气流的脉冲风洞。风洞首次采用了活塞挤压为加热器供应燃料和路德维希管供应富氧空气的工作方式,实现了风洞试验过程中需多少燃料就供多少燃料,消除了采用路德维希管供燃料存在的弊端。自主研制的大通径快速阀取代了膜片,提高了设备运行效率。风洞在吸气式高超声速技术研究中得到了成功应用。  相似文献   

13.
为了探寻在地面常规暂冲式风洞中开展高超声速进气道加速自起动实验的可行性,提出了基于前遮板的高超声速进气道连续变攻角加速自起动实验方法。该实验方法通过将安装有前遮板的进气道模型在风洞实验段整体从极限正攻角旋转至极限负攻角,前遮板会产生激波对远前方气流减速,或产生膨胀波对远前方气流加速,而位于前遮板下游的进气道即可获得加速自起动过程所需连续加速的来流条件。通过数值仿真对所提出的加速自起动实验方法进行了验证。研究结果显示:以2(°)/s的角速度整体旋转基于前遮板的高超声速进气道模型,其起动马赫数与高超声速进气道自身加速自起动马赫数相差在1%以内,表明基于前遮板的高超声速进气道连续变攻角加速自起动实验方法能够被用于在常规暂冲式风洞中开展高超声速进气道加速自起动实验研究。   相似文献   

14.
高超声速边界层转捩是空气动力学亟须研究的关键问题之一。飞行器表面的热防护系统会由于高温烧蚀产生宏观分布式粗糙元形貌,但是目前该宏观烧蚀形貌对高超声速边界层内不稳定波演化机制的影响尚不明晰。基于华中科技大学?0.5 m马赫数6 Ludwieg管风洞,利用高频压力传感器(PCB)和红外热像仪等测量手段,重点研究了分布式粗糙元布置位置和宽度对零攻角下7°半张角尖锥模型高超声速边界层不稳定波演化特征和转捩位置的影响。试验结果表明,将分布式粗糙元布置于同步点之前会促进第二模态不稳定波的演化,且越靠近前缘位置粗糙元宽度因素对下游不稳定波演化影响越小;但随其分布位置向下游移动,促进转捩作用减弱,对不稳定波的非线性交互抑制效果更为明显,转捩位置随之后移。  相似文献   

15.
《推进技术》2001,22(3):198
美国空军的阿诺德工程研制中心(AEDC),正在负责实施一项8年的研究计划,目的在2015年建成一个马赫数达15的高超声速风洞实验基地。磁流体动力学加速器转化成先进的高超声速(Mariah)项目的团队成员,正在研究应用超高压空气、一台电子束加速器和一台磁流体动力学加速器以达到马赫数为12~15的试验速度。美国弹道导弹防御组织对Mariah项目很感兴趣,因为将来的高超声速导弹需要进行这样高速度的试验,而美国目前还没有能力对飞机或导弹进行马赫数为10~15的实际飞行条件下的试验。 为了在试验段内建立200 MPa以上的超高压,同时又维持中等高的空气温度,需要采用一系列的特殊设计。空气将先被加速至马赫数2,再用电子束加入辐射能,增压超声速气流,使其达到马赫数12,然后用磁流体动力学加速器将气流进一步加速至马赫数15。 要建成世界上最大功率的电子束加速器,最早也得到2002年,这仅是用1 MW电子束加热通过一喷管。若实验成功,再在2005年将10 MW~20 MW电子束与高压空气增压器集气管和磁流体动力学加速器相组合进行实验,以确定构建200 MW电子束全尺寸装置的可行性。建设这一项目大约需要8年时间。 (本刊通讯员)  相似文献   

16.
不起动流场对超声速/高超声速进气道自起动性能的影响   总被引:2,自引:0,他引:2  
对7个典型速域的二维超声速/高超声速进气道加速自起动过程进行了准定常数值仿真,分析了真实临界不起动流场对进气道自起动性能的影响,研究发现:存在一种介于超声速和高超声速临界不起动模式之间的过渡临界不起动模式。当真实不起动流场处于超声速临界不起动模式时,自起动马赫数略大于无黏设计自起动马赫数;处于过渡临界不起动模式时自起动马赫数小于无黏设计自起动马赫数;而该研究中处于高超声速临界不起动模式的进气道,自起动马赫数明显大于无黏设计自起动马赫数。高超声速临界不起动模式下的喉道截面特征气流参数显著偏离无黏临界不起动流场,所以Kantrowitz理论以及基于该理论发展而来的系列方法不适用于预测高超声速进气道自起动性能。  相似文献   

17.
拉瓦尔喷管实验数据采集系统建设   总被引:1,自引:0,他引:1  
1介绍 具有收敛-扩张面积变化规律的拉瓦尔喷管(Laval Nozzle)可将亚声速流动加速到超声速,在航空航天推进系统中具有广泛应用.因此拉瓦尔喷管实验是航空宇航推进理论与工程专业本科学生必做的教学实验。通过该实验.学生可以加深理解气体动力学中有关变截面管流的理论知识,掌握收-扩喷管工作原理和工作状态,激发学生学习航空航天推进系统的兴趣.还可了解航空航天气动试验广泛采用的气动测试与数据采集系统。  相似文献   

18.
杨样  晏至辉  蒲旭阳  曾令国  马宏祥 《推进技术》2017,38(12):2830-2835
为了发展高流场品质、安全可靠运行的高超声速高温风洞技术,研制了一种新型的液氧/空气/异丁烷燃烧加热器。该加热器采用"气液燃烧"模式组织燃烧,考虑了均匀流场设计,并利用空气-异丁烷火炬点火器实现点火。50kg/s量级燃烧加热器点火调试表明,主气流能实现快速点火,在火炬关闭后,继续维持稳定燃烧。利用Φ1m喷管,针对马赫数6,总压6.0MPa及5.2MPa开展流场校测,结果表明燃烧加热器在喷管出口直径80%的中心区域提供均匀气流,在流场均匀区内,马赫数均方根偏差在0.05以内,总温均方根偏差在20K以内,能支撑高超声速气动及推进试验。  相似文献   

19.
超声速气流中纳秒脉冲放电特性实验研究   总被引:1,自引:0,他引:1  
阳鹏宇  张百灵  李益文  张扬 《航空学报》2014,35(6):1539-1548
产生超声速导电流体是开展磁流体(MHD)动力技术实验研究的前提,低温超声速条件下产生大体积均匀等离子体有效可行的方法之一是纳秒脉冲介质阻挡放电。介绍了基于马赫数为3吸气式双喉道风洞的超声速纳秒脉冲介质阻挡放电实验系统的基本组成、设计原理和运行情况,分别在静止和马赫数为3超声速条件下对气体电离,测量分析电压和电流波形。得到以下结论:风洞稳定工作时间约为16 s,满足超声速气体放电实验的可靠进行和数据的有效采集;实验条件下,纳秒脉冲介质阻挡放电气体击穿与电场强度值有关,而与电场强度变化率无关;实验条件下,着火电压大小受超声速气流密度波动影响显著,而受气流速度影响较小。另外,气体击穿后的放电状态受超声速气流影响小;气体击穿时刻的电流峰值受着火电压和实验环境中随机自由电子数共同影响。  相似文献   

20.
中国空气动力研究与发展中心自行设计的2m×2m超声速风洞于2010年底建成,它是一座直流、暂冲式风洞,采用了全挠性壁喷管技术。喷管总长18m,具有马赫数1.5~4.0的十多个型面,每个型面通过24对撑杆的伸缩实施成型。该喷管的气动设计采用了具有连续曲率的Sivells设计方法,并用Maxwell方法对其进行了边界层修正。该喷管采用实验影响法进行了喷管型面的动态调试,个别型面还采用了二次修正。调试结果显示,在各设计马赫数下,试验段模型区流场指标均优于GJB先进指标,表明该喷管的气动设计是成功的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号