共查询到20条相似文献,搜索用时 0 毫秒
1.
Ya. I. Feldstein 《Space Science Reviews》1976,18(5-6):777-861
The concepts of near-pole magnetic field variations during magnetically quiet periods are explored, with special emphasis on the relationships of these variations to interplanetary magnetic field components. Methods are proposed for relating the variations which have been observed to the fields from the various sources, based on a thorough selection of reference levels. We assume that the field variations in the summer polar cap during magnetically quiet periods consist of the following components: (i) the middle-latitude S
qvariation extended to the polar region; (ii) the DPC(B
y) single-cell current system with a polar electrojet in day-side cusp latitudes; (iii) the DMC(B
z) two-cell current system of magnetospheric convection, in the form of a homogeneous current sheet in the polar cap towards the sun, with return currents through lower latitudes; (iv) the DPC(B
z) single-cell counterclockwise current system with a focus in the day-side cusp region. Quantitative relations between the near-pole variation intensities and the value and sign of the IMF azimuthal component, with a 1 hr time resolution, have been obtained and used to suggest ways of diagnosing the interplanetary magnetic field on the basis of ground observations. 相似文献
2.
Y. I. Feldstein 《Space Science Reviews》1992,59(1-2):83-165
The models are examined which are proposed elsewhere for describing the magnetic field dynamics in ring-currentDR during magnetic storms on the basis of the magnetospheric energy balance equation. The equation parameters, the functions of injectionF and decay , are assumed to depend on interplanetary medium parameters (F and during the storm main phase) and on ring-current intensity ( during the recovery phase). The present-day models are shown to be able of describing theDR variations to within a good accuracy (the r.m.s. deviation 5 < < 15 nT, the correlation coefficient 0.85 <r < 1). The models describe a fraction of the geomagnetic field variation during a magnetic storm controlled by the geoeffective characteristic of interplanetary medium and, therefore responds directly to the variation of the latter. The fraction forms the basis of the geomagnetic field variations in low and middle latitudes. The shorter-term variations ofDR are affected by the injections into the inner magnetosphere during substorm intervals.During magnetic storms, the auroral electrojets shift to subauroral latitudes. When determining theAE indices, the data from the auroral-zone stations must be supplemented with the data from subauroral observatories. Otherwise, erratic conclusions may be obtained concerning the character of the relationships ofDR toAE or ofAE to interplanetary medium parameters. Considering this circumstance, the auroral electrojet intensity during the main phase is closely related to the energy flux supplied to the ring current. It is this fact that gives rise simultaneously to the intensification of auroral electrojets and to the large-scale decrease of magnetic field in low latitudes.The longitudinal asymmetry of magnetic field on the Earth's surface is closely associated with the geoeffective parameters of interplanetary medium, thereby making it possible to model-estimate the magnetic field variations during magnetic storms at given observatories. The inclusion of the field asymmetry due to the system of large-scale currents improves significantly the agreement between the predicted and model field variations at subauroral and midlatitude observatories. The first harmonic amplitude of field variation increases with decreasing latitude. This means that the long-period component of theD
st
-variation asymmetry is due rather to the ring-current asymmetry, while the shorter-term fluctuations are produced by electrojets. The asymmetry correlates better with theAL indices (westward electrojet) than with theAU indices (eastward electrojet).The total ion energy in the inner magnetosphere during the storm main phase is sufficient for the magnetic field observed on the Earth's surface to be generated. The energy flux to the ring current is 15% of the -energy flux into the magnetosphere. 相似文献
3.
David M. Rust 《Space Science Reviews》1983,34(1):21-36
Coronal disturbances lead to geomagnetic storms, proton showers, auroras and a wide variety of other phenomena at Earth. Yet, attempts to link interplanetary and terrestrial phenomena to specific varieties of coronal disturbances have achieved only limited success. Here, several recent approaches to prediction of interplanetary consequences of coronal disturbances are reviewed. The relationships of shocks and energetic particles to coronal transients, of proton events to γ-ray bursts, of proton events to microwave bursts, of geomagnetic storms to filament eruptions and of solar wind speed increases to the flare site magnetic field direction are explored. A new phenomenon, transient coronal holes, is discussed. These voids in the corona appear astride the long decay enhancements (LDE's) of 2–50 Å X-ray emission that follow Hα filament eruptions. The transient holes are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. There is some evidence that transient coronal holes are associated with transient solar wind speed increases. 相似文献
4.
张德荣 《沈阳航空工业学院学报》2009,26(4):85-87
根据磁流体力学和太阳黑子物理学,提出了地球磁场扭转振动的一种理论.对扭转振动的机制和模式进行了简要的描述.对振动周期和日长季节性变化进行了估算,并对扭转振动过程中可能产生的其他效应进行了讨论. 相似文献
5.
R. J. Forsyth 《Space Science Reviews》1995,72(1-2):153-163
As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described. 相似文献
6.
7.
Sylvie Sahal Bréchot 《Space Science Reviews》1981,29(4):391-401
The Hanle effect is the modification by the local magnetic field of the linear polarization parameters of a spectral line. A brief summary of the theory is presented and it is shown how the complete magnetic vector field can be recovered from the interpretation of the Hanle effect in spectral lines polarized by resonance scattering.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980. 相似文献
8.
V. I. Karpman 《Space Science Reviews》1974,16(3):361-388
This paper is a review of nonlinear theory of ELF waves propagating along the magnetic field in the magnetosphere. The following subjects are covered: (1) Main peculiarities of the Quasi-linear Approximation. (2) Nonlinear interaction of monochromatic waves with the resonant particles. (3) Side-band instability. (4) Quasimonochromatic wave packets. (5) Effects due to the inhomogeneity of the medium. 相似文献
9.
J. V. Kovalevsky 《Space Science Reviews》1971,12(2):187-257
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms. 相似文献
10.
Summary We bring together our general results in two figures. Figure 14 portrays the resolution of the light of the night sky into its three principal components based on a series of zenith observations extending over a year at the two stationse: Fritz Peak in Colorado, U.S.A., (latitude N 39°.9, longitude W 105°.5) and Haleakala in Hawaii, U.S.A. (latitude N 20°.7, longitude W 156°.3). The observations are from a current study by Roach and Smith (1964a) using photometers centered on wavelength 5300 Å. With respect to sidereal time the airglow continuum is a constant. The two Milky Way traverses are conspicuous features of the integrated starlight curves. The variation of the zodiacal light is the result of the variable ecliptic latitude of the zenith throughout the year. A refined analysis of the data, not shown in the plot, gives a further variation of the zodiacal light as a function of - bd, the differential ecliptic longitude between the zenith and the sun. The zodiacal light is the brighter of the three components except when the Milky Way is in the zenith. The zodiacal light tends to be systematically brighter toward the horizon so that it is definitely the most prominent of the three for the sky as a whole.The interrelationships of the constituents of the light of the night sky are shown from a different point of view in Figure 15 where the ordinate is logarithm of the surface brightness and the abscissa is logarithm of the distance or extent. Moving downward in the plot the features of the night sky appear below the line corresponding to the end of twilight. The brightness of the nightglow, the zodiacal light and gegenschein, the integrated starlight and galactic light are comparable (on the logarithm scale) but one is impressed with the vastly different linear distances in connection with the several phenomena. The nightglow is a terrestrial phenomenon having a thickness of about one atmospheric scale height (log R 7). The zodiacal light is an interplanetary phenomenon with a characteristic dimension of one astronomical unit (log R 13). The integrated starlight from our galaxy has a characteristic maximum dimension of some 30 kpc (log R 23). Finally the extra galactic nebulae which collectively contribute much less than 1% of the light of the night sky are at distances as much as log R 28. They can be photographed individually in spite of the competition of the sky background and in spite of the hazard of extinction by intervening dust.In the preparation of this report the writer has been impressed with the confluence of several circumstances that make possible the observation of the universe in the visible part of the spectrum. Any one of several contingencies might have made such observations impossible.Let us consider the matter of contrast. The prime example here is the bright (but beautiful!) day sky which prohibits serious daytime study of the astronomical sky. There follows, during a diurnal terrestrial rotation the period of twilight which under the best of circumstances lasts a little less than 1 1/2 hours but which, during the local summer, in the vicinity of polar regions persists all night. The obliquity of the ecliptic is sufficient to make a stimulating annual sequence of seasons but small enough to keep the twilight period of reasonable duration over a good portion of the earth.A hazard narrowly averted is that due to the interplanetary dust cloud leading to the zodiacal light. The concentration of dust is very small indeed (Figure 10) so that an increase by a factor often would be trivial in terms of the constitution of the solar system. But such an increase would result in a night sky so bright (average zodiacal light 2000 S10 (vis) instead of 200) that the Milky Way would be difficult to see and the airglow difficult to measure. The aesthetic gain in a rather spectacular zodiacal light pattern over the sky would hardly compensate for the loss from the absence of the details of our galactic universe. The effect of such an enhanced zodiacal light would correspond to that experienced in a planetarium when the operator adjusts the rheostats to bring on dawn and the celestial objects disappear.A permanent twilight that would have the same effect would be due to the hydroxyl nightglow if (a) it were concentrated in the visible part of the spectrum rather than in the near infra red or if (b) the human eyes were sensitive in the near infrared.The narrow escape from the cosmic ignorance that would have resulted from a situation in which the observer found himself in a less favorable environment is well illustrated by the zone of avoidance of extra galactic nebulae in the vicinity of the Milky Way plane. If our galaxy were not highly flattened so that its extent perpendicular to the plane is sufficiently small to permit an observational window outward we would not have been able to photograph the extra-galactic objects and we would have been content with a rather restricted concept of a universe consisting of a single galaxy. The same dire result would have occurred if the sun to which our planet is attached were more deeply embedded in the galactic dust near the galactic center. Thus we find compensation for our non-central location.There can be little doubt that human ingenuity would in time have overcome any or all of the above circumstances as the radio astronomers have done by changing the exploring frequency so as to avoid the difficulties. But this would have taken time, especially in the absence of the stimulation of the knowledge gained by visual and photographic observations. It is likely that the time lag would have been sufficient that the present review could not have been written by the present author. It may be conjectured whether other astronomers on other planets are as fortunate or whether, after all, this is the best of all possible worlds.Contribution number 73. The report was written while the author was a Senior Specialist at the East-West Center of the University of Hawaii — on leave of absence from the Central Radio Propagation Laboratory of the U.S. National Bureau of Standards, Boulder, Colo., U.S.A.
相似文献
相似文献
11.
稳恒磁场安培环路定理是磁场的重要场方程,它反映了磁场的涡旋性及磁场与电流的关系,给出通过电流的分布求解具有某种对称性系口均匀性磁场的途径.文中准确地叙述了磁场安培环路定理,并对该定理给出了详细准确的论证,它克服了一些〈大学物理〉教材中关于磁场安培环路定理叙述的不准确问题,并避免了由于环路定理叙述的不准确而造成求解由电流产生磁场的某些错误,对进一步认识和理解磁场的性质将有所帮助,也给出用矢量场分析磁场性质的一种方法. 相似文献
12.
SOHO: The Solar and Heliospheric Observatory 总被引:1,自引:0,他引:1
The Solar and Heliospheric Observatory (SOHO), together with the Cluster mission, constitutes ESA's Solar Terrestrial Science Programme (STSP), the first Cornerstone of the Agency's long-term programme Space Science — Horizon 2000. STSP, which is being developed in a strong collaborative effort with NASA, will allow comprehensive studies to be made of the both the Sun's interior and its outer atmosphere, the acceleration and propagation of the solar wind and its interaction with the Earth. This paper gives a brief overview of one part of STSP, the SOHO mission. 相似文献
13.
The Solar Maximum Year is a world-wide cooperative project to gain more insight in certain aspects of solar flares. It consists of three sub-programs: The Flare Build-up Study (FBS), the Study of Energy Release from Flares (SERF), and the Study of Travelling Interplanetary Phenomena (STIP). These programs are described. We also describe space observations to be performed during SMY, particularly the Solar Maximum Mission Satellite.Invited talk, presented at 22nd COSPAR Meeting in Bangalore on 7 June, 1979. 相似文献
14.
15.
C. T. Bolton 《Space Science Reviews》1989,49(3-4):311-322
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk. 相似文献
16.
17.
The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the “CR-B” relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date. 相似文献
18.
Results of the wavelet power spectrum (WPS) analysis(which covers the 1969–1998 years) obtained using the daily data of the
following parameters: (i) the Mt. Wilson Magnetic Plage Strength index (MPSI), (ii) the solar LDE-type flare index (LDE-FI)
and (iii) the Calgary cosmic-ray (CR) intensity, are reported for periods ranging between 64 and 1024 days. The temporal distribution
of the WPS during the last three solar activity cycles is extremely discontinuous. A clear resemblance between the CR and
LDE-FI WPS is obtained only for the 22nd solar activity cycle. Nevertheless, the CR multiperiod peak, observed in 1982, can
well be identified with the WPS peaks obtained in both solar parameters under consideration. In the 21st cycle, we found significant
the MPSI periods around 850–880 days (2.3–2.4 yr), while such periods are present in the LDE-FI data of the 22nd cycle. In
the CR data we discerned a net periodicity around 650 days (1.7 yr).
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
19.
R. Wieler 《Space Science Reviews》1998,85(1-2):303-314
Lunar soil and certain meteorites contain noble gases trapped from the solar wind at various times in the past. The progress in the last decade to decipher these precious archives of solar history is reviewed. The samples appear to contain two solar noble gas components with different isotopic composition. The solar wind component resides very close to grain surfaces and its isotopic composition is identical to that of present-day solar wind. Experimental evidence seems by now overwhelming that somewhat deeper inside the grains there exists a second, isotopically heavier component. To explain the origin of this component remains a challenge, because it is much too abundant to be readily reconciled with the known present day flux of solar particles with energies above those of the solar wind. The isotopic composition of solar wind noble gases may have changed slightly over the past few Ga, but such a change is not firmly established. The upper limit of ~5% per Ga for a secular increase of the 3He/4He ratio sets stringent limits on the amount of He that may have been brought from the solar interior to the surface (cf. Bochsler, 1992). Relative abundances of He, Ne, and Ar in present-day solar wind are the same as the long term average recorded in metallic Fe grains in meteorites within error limits of some 15-20%. Xe, and to a lesser extent Kr, are enriched in the solar wind similar to elements with a first ionisation potential < 10 eV, although Kr and Xe have higher FIPs. This can be explained if the ionisation time governs the FIP effect (Geiss and Bochsler, 1986). This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
T. A. Howard M. M. Bisi A. Buffington J. M. Clover M. P. Cooke C. J. Eyles P. P. Hick P. E. Holladay B. V. Jackson J. C. Johnston S. W. Kahler T. A. Kuchar D. R. Mizuno A. J. Penny S. D. Price R. R. Radick G. M. Simnett S. J. Tappin N. R. Waltham D. F. Webb 《Space Science Reviews》2013,180(1-4):1-38
The Solar Mass Ejection Imager (SMEI) was the first of a new class of heliospheric and astronomical white-light imager. A heliospheric imager operates in a fashion similar to coronagraphs, in that it observes solar photospheric white light that has been Thomson scattered by free electrons in the solar wind plasma. Compared with traditional coronagraphs, this imager differs in that it observes at much larger angles from the Sun. This in turn requires a much higher sensitivity and wider dynamic range for the measured intensity. SMEI was launched on the Coriolis spacecraft in January 2003 and was deactivated in September 2011, thus operating almost continuously for nearly nine years. Its primary objective was the observation of interplanetary transients, typically coronal mass ejections (CMEs), and tracking them continuously throughout the inner heliosphere. Towards this goal it was immediately effective, observing and tracking several CMEs in the first month of mission operations, with some 400 detections to follow. Along with this primary science objective, SMEI also contributed to many and varied scientific fields, including studies of corotating interaction regions (CIRs), the high-altitude aurora, zodiacal light, Gegenschein, comet tail disconnections and motions, and variable stars. It was also able to detect and track Earth-orbiting satellites and space debris. Along with its scientific advancements, SMEI also demonstrated a significantly improved accuracy of space weather prediction, thereby establishing the feasibility and usefulness of operational heliospheric imagers. In this paper we review the scientific and operational achievements of SMEI, discuss lessons learned, and present our view of potential next steps in future heliospheric imaging. 相似文献