首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电离层等离子体主动释放试验研究   总被引:1,自引:1,他引:0  
等离子体主动释放试验是空间物理研究的一种主动、有效手段. 2013年4月中国科学院空间科学与应用研究中心在海南进行了中国第一次空间等离子体主动释放试验. 探空火箭在190 km高度释放了近1 kg碱金属钡, 形成一团由钡原子和钡离子组成的云团. 利用地面光学观测手段, 记录了钡云从释放初期到末期的演化全过程, 获取了钡云亮度、粒子密度、成分及扩散范围随时间的变化规律. 通过对钡云漂移的研究, 得到低纬度地区释放点处电离层的中性风场特性, 其分析结果对于研究低纬度地区电离层动力学特性具有一定指导意义.   相似文献   

2.
Time sequences of recurrent mass ejections have been observed during a coordinated SMY program (1 Sept. 1980 – 23 Sept. 1980 – 2 Oct. 1980).Comparison of the temporal evolution of Hα and CIV brightnesses shows a weak phase lag between H α and CIV maxima, in the case of homologous flares, with CIV brightness maxima preceding H α maxima. The analysis of the variation of the ejection velocities is expected to lead to the determination of an energy balance.Such recurrent ejections could be due to periodic energy storage and periodic reorganisation of magnetic field as envisaged to occur for flares, but at lower energy levels.  相似文献   

3.
We reexamine the magnetic field measurements from the Ba+ ion release, made as part of the international AMPTE space programme on 27 December 1984. Observations from the Earth showed that the initial motion of the ion cloude was southward (-ZGSE). Examination of the magnetic field structure at the two spacecraft in the vicinity of the release indicates that there was a net southward force acting during the period immediately preceeding the motion. We show that this force was adequate to accelerate the cloud in the southward direction. We propose that the momentum acquired by the core of the cloud in this process is balanced by ions on the flanks (in YGSE) accelerating northward with the stress being communicated through the field.  相似文献   

4.
It is shown that experiments with geostationary injections of dense barium plasma clouds after CRRES program presented a unique opportunity for investigation of Earth's space environment radiation generation mechanism at frequencies 100 to1000 times higher than the usual plasma frequency signal. We present electromagnetic noise or radiostorm data obtained in Havana in broad frequency bands 45–90 MHz, 235MHz and 280 MHz after Ba injection. It is proposed that signals appearing with 7 to 10 min delay after injection possibly caused a substorm initiated by the injection, during which the radiation is generated by local energetic particles flowing through the irregular barium cloud. Another possibility is connected with irradiation of the barium cloud by the Jicamarca radar. Modulation of radioburst at barium gyrofrequency is typical for both cases.  相似文献   

5.
In both the ionospheric barium injection experiments CRIT I and CRIT II, a long-duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomenon which was proposed for the CRIT 1 experiment is here compared to the results from CRIT II which made a much more complete set of measurements. The model follows the motion of a low-β ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction vi but slightly tilted towards the self-polarization direction EP = −vixB. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by ΔEBVa. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT II. The possibility to extend the model to the active region, where the ions are produced in this type of self-ionizing injection experiments, is discussed.  相似文献   

6.
Magnetic Clouds (MCs) are the interplanetary manifestation of Coronal Mass Ejections. These huge astrophysical objects travel from the Sun toward the external heliosphere and can reach the Earth environment. Depending on their magnetic field orientation, they can trigger intense geomagnetic storms. The details of the magnetic configuration of clouds and the typical values of their magnetohydrodynamic magnitudes are not yet well known. One of the most important magnetohydrodynamic quantities in MCs is the magnetic helicity. The helicity quantifies several aspects of a given magnetic structure, such as the twist, kink, number of knots between magnetic field lines, linking between magnetic flux tubes, etc. The helicity is approximately conserved in the solar atmosphere and the heliosphere, and it is very useful to link solar phenomena with their interplanetary counterpart. Since a magnetic cloud carries an important amount of helicity when it is ejected from the solar corona, estimations of the helicity content in clouds can help us to understand its evolution and its coronal origin. In situ observations of magnetic clouds at one astronomical unit are in agreement with a local helical magnetic structure. However, since spacecrafts only register data along a unique direction, several aspects of the global configuration of clouds cannot be observed. In this paper, we review the general properties of magnetic clouds and different models for their magnetic structure at one astronomical unit. We describe the corresponding techniques to analyze in situ measurements. We also quantify their magnetic helicity and compare it with the release of helicity in their solar source for some of the analyzed cases.  相似文献   

7.
The Trigger experiment was designed to test the response of the auroral ionosphere to an impulsive release of a hot, dense plasma. It consisted of a sounding rocket payload divided into two parts, an instrumented diagnostic section and a cesium doped high explosive canister. When the two sections were separated by about 1 km, but close to the same magnetic field line, the cesium high explosive was ignited and the plasma around the payload was observed to increase briefly by a factor of 4 in density and a factor of 2 in temperature.A variety of particle and field phenomena occurred in rapid succession after the cesium release. A drastic increase in the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about 1 second. There is also evidence of a second particle burst, starting one second after the release and lasting for tens of seconds. A transient electric field pulse of 200 mV/m appeared just before the particle flux increase began. Additional effects include electrostatic waves associated with the cesium cloud boundary. The field aligned currents associated with the electric field pulse and cloud conductivity gradient may be responsible for the observed electron acceleration in a manner similar to the electrodynamic origin of auroral arcs.  相似文献   

8.
微流星及空间碎片的高速撞击威胁着长寿命,大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效,为精确估计微流星及空间碎片主速撞击防护屏产生的碎片对舱壁的损伤,必须确定碎片云速度特性。文章在冲量和能量守恒的基础上,建立了碎片速度性分析模型,研究了碎片云的速度特性,得到了碎片云材料传播及碎片云喷射角随弹丸撞击速度的变化规律。  相似文献   

9.
The evolution of a barium ion cloud formed in the MR-20 rocket experiment in the low-latitude ionosphere is considered using data of Doppler multifrequency sounding.  相似文献   

10.
基于离子在加热条件下呈现各向异性分布的假设,建立离子声波激发条件下非平衡态的三维离子速度分布函数模型,给出任意视线方向上非相干散射谱的计算方法,分析幅度修正因子、离子声速粒子组分、雷达波束方向与磁场方向夹角及温度各向异性对功率谱的影响.研究结果可以解释离子线谱超过一个量级的幅度增强现象和上行离子线强于下行离子线的不对称现象,对加热强扰动电离层条件下的等离子体参数反演具有重要意义.   相似文献   

11.
Plasma and magnetic field disturbances accompanying dust particle impacts are explained by means of creation of a secondary cloud around the spacecraft. Cold cometary ions impinging upon the cloud are scattered by atoms of the cloud. This scattering changes initial angular distribution of cometary ions. Magnetic field perturbation is created by the friction between the electron component of the cometary plasma flow and the cloud.  相似文献   

12.
Every day billions of meteoroids impact and disintegrate in the Earth’s atmosphere. Current estimates for this global meteor flux vary from 2000 to 200,000 tons per year, and estimates for the average velocity range between 10 km/s and 70 km/s. The basic properties of this global meteor flux, such as the average mass, velocity, and chemical composition remain poorly constrained. We believe much of the mystery surrounding the basic parameters of the interplanetary meteor flux exists for the following reason, the unknown sampling characteristics of different radar meteor observation techniques, which are used to derive or constrain most models. We believe this arises due to poorly understood radio scattering characteristics of the meteor plasma, especially in light of recent work showing that plasma turbulence and instability greatly influences meteor trail properties at every stage of evolution. We present our results on meteor plasmas simulations of head echoes using particle in cell (PIC) ions, which show that electric fields strongly influence early stage meteor plasma evolution, by accelerating ions away from the meteoroid body. We also present the results of finite difference time domain electromagnetic simulations (FDTD), which can calculate the radar cross section of the simulated meteor plasmas. These simulations have shown that the radar cross section depends in a complex manner on a number of parameters. These include the angle between radar and meteor entry, a large dependence on radar frequency, which shows that for a given meteor plasma size and density, the reflectivity as a function of probing radar frequency varies, but typically peaks below 100 MHz.  相似文献   

13.
One phenomena Yohkoh has observed is plasmoid eruption in flares. Thus this is a key factor that must be explained in any flare mechanism. In order to understand the dynamics of a plasmoid, we performed a numerical MHD simulation and investigated the evolution of the coronal magnetic field, which is initially a force-free configuration. The main results are as follows. At first, small amount of dissipation, induced by the initial perturbation, occurs in the current sheet where the plasmoid forms. This plasmoid is slowly going upward by magnetic tension force of the reconnected magnetic fields produced by initial dissipation. The crucial point comes when the perpendicular magnetic fields are washed away from the reconnection point, after that the reconnection proceeds effectively so that the magnetic tension force of the reconnected fields becomes strong, which make the plasmoid be rapidly erupted upward. These are consistent with the observational results, which say that before the main energy release the plasmoid slowly rises and when the flare sets in it is rapidly accelerated upward. In this paper, we emphasize on the role that the perpendicular magnetic fields play in the evolution of flare.  相似文献   

14.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   

15.
采用粒子网格方法对同轴微阴极电弧推力器μCAT工作过程进行了模拟研究, 并应用自相似方法对模型进行简化,获得了推力器羽流区的电子数密度分布、离子数密度分布、电势分布及离子轴向平均速度,通过改变磁感应强度和位形分析磁场对推力器内等离子体运动特性及推力器性能的影响。计算结果表明,电子被外加磁场捕获约束在磁力线附近,低速离子与高速电子形成的双极扩散电场加速离子喷出;在相同流量情况下,磁感应强度002T时,离子返流严重,磁感应强度005~030T时,磁感应强度变化对速度影响较小;磁场位形对离子运动和推力器性能有较大影响,磁力线与轴线夹角较小时离子速度下降明显,夹角较大时离子返流严重。  相似文献   

16.
As one payload of a Chinese seismic satellite program, an ion drift meter (IDM) will measure drift velocity of thermal ions at an altitude of 500 km. Previous works have shown that such instruments use biased grids to create nonuniform potential in the grid planes, which brings systematic errors to the inferred parameters. A commercial finite element analysis software is used to simulate this instrument in the exact size. The error sources from thermal velocity, nonuniform transparency of real grids and potential depression in the grid planes are explained. The simulation results show that the arrival angle and drift velocity will be underestimated in all the conditions and the maximal error will be about −0.87° and −121 m/s, respectively. Furthermore, the relative error of the inferred arrival angle and the drift velocity will be inversely correlated with the arrival angle because of the lensing effect of the potential depression. This simulation provides a quantificational method of evaluating and correcting the data during in situ operation.  相似文献   

17.
Measurements inside a high velocity neutral barium beam show a factor of six increase in plasma density in a moving ionizing front. This region was co-located with intense electric fields (δE ≈ 300 mV/m2) perpendicular to the local geomagnetic field and field aligned currents all fluctuating at frequencies well under the lower hybrid frequency for barium but above the oxygen cycloton frequency. It was determined that these structures were moving with the barium stream near the neutral barium velocity. Large quasi-dc electric and magnetic field fluctuations were also detected. The heart of the ionizing front, a cross beam current of nearly 10 mA/m2, was estimated from the magnetic field variation. This is three orders of magnitude higher than typical auroral zone currents associated with auroral arcs. This current sheet was co-located with fluxes of soft electrons which saturated the particle detector. An Alfvén wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along Bo where it was detected by an instrumented sub-payload.  相似文献   

18.
Evidence for an enhancement of the electron flux associated with a barium chaped charge release from “SPOLOKH-2” rocket payload, launched from Volgograd (L = 2.2) on June 29, 1978, will be presented. There is also evidence for a periodic train of particle bursts occurring with about 11 second period during more than 100 seconds after the release. The observed phenomena is interpreted as a “trigger-effect”.  相似文献   

19.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

20.
Results of experimental studies of the ionospheric effects produced by CRRES barium releases are considered. The experimental observations of HF spectral characteristics by Doppler method are made by a network of long distance radio paths intersecting the L-shell of releases. The time dependence of their occurrence relative to the moment of release and the character of changes of spectral parameters produces signal effects (SE) which may be classified as: the unique burst, the quasiperiodic group of bursts, the regular changes of spectral parameters and wave processes. Observed types of SE are analogous to those seen when the releases were produced at the heights from 140 to 160 km. The result of experimental observations testify that there are special geophysical phenomena produced by barium releases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号