首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzian  Achim 《Space Science Reviews》1999,90(1-2):131-139
The gas flux from a volatile icy-dust mixture is computed using a comet nucleus thermal model in order to study the evolution of CO outgassing during several apparitions from long-period Comet Hale-Bopp and short-period Comet Wirtanen. The comet model assumes a spherical, porous body containing a dust component, one major ice component (H2O), and one minor ice component of higher volatility (CO). The initial chemical composition is assumed to be homogeneous. The following processes are taken into account: heat and gas diffusion inside the rotating nucleus; release of outward diffusing gas from the comet nucleus; chemical differentiation by sublimation of volatile ices in the surface layers and recondensation of gas in deeper, cooler layers. A 2-D time dependent solution is obtained through the dependence of the boundary conditions on the local solar illumination as the nucleus rotates. The model for Comet Hale-Bopp was compared with observational measurements (Biver et al., 1999). The best agreement was obtained for a model with amorphous water ice and CO, assuming that a part of the latter is trapped by the water ice, another part is condensed as an independent ice phase. The model confirms that sublimation of CO ice at large heliocentric distance produces a gradual increase in the comet's activity as it approaches the Sun. Crystallization of amorphous water ice begins at 7 AU from the Sun, but no outbursts were found. Seasonal effects and thermal inertia of the nucleus material lead to larger CO outgassing rates as the comet recedes from the Sun. In the second part of this work the model was run with the orbital parameters of Comet Wirtanen. Unlike Comet Hale-Bopp, the predicted CO outgassing from Comet Wirtanen is almost constant throughout its orbit. Such behavior can be explained by a thermally evolved and chemically differentiated comet nucleus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The Deep Impact observations of low thermal inertia for comet 9P/Tempel 1 are of profound importance for the observations to be made by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. While sub-surface sublimation is necessary to explain the observations, the depth at which this occurs is no more than 2–3 cm and possibly less. The low thermal conductivity when combined with local surface roughness (also observed with Deep Impact) implies that local variations in outgassing rates can be substantial. These variations are likely to be on scales smaller than the resolution limits of all experiments on the Rosetta orbiter. The observed physico-chemical inhomogeneity further suggests that the Rosetta lander will only provide a local snapshot of conditions in the nucleus layer.  相似文献   

3.
Huebner  W.F.  Benkhoff  J. 《Space Science Reviews》1999,90(1-2):117-130
A major goal of comet research is to determine conditions in the outer solar nebula based on the chemical composition and structure of comet nuclei. The old view was to use coma abundances directly for the chemical composition of the nucleus. However, since the composition of the coma changes with heliocentric distance, r, the new view is that the nucleus composition msut be determined from analysis of coma mixing ratios as a function of r. Taking advantage of new observing technology and the early detection of the very active Comet Hale-Bopp (C/1995 O1) allows us to determine the coma mixing ratios over a large range of heliocentric distances. In our analysis we assume three sources for the coma gas: (1) the surface of the nucleus (releasing water vapor), (2) the interior of the porous nucleus (releasing many species more volatile than water), and (3) the distributed source (releasing gases from ices and hydrocarbon polycondensates trapped and contained in coma dust). Molecules diffusing inside the nucleus are sublimated by heat transported into the interior. The mixing ratios in the coma are modeled assuming various chemical compositions and structural parameters of the spinning nucleus as it moves in its orbit from large heliocentric distance through perihelion. We have combined several sets of observational data of Comet Hale-Bopp for H2O (from OH) and CO, covering the spectrum range from radio to UV. Many inconsistencies in the data were uncovered and reported to the observers for a reanalysis. Since post-perihelion data are still sparse, we have combined pre- and post-perihelion data. The resulting mixing ratio of CO relative to H2O as a function of r is presented with a preliminary analysis that still needs to be expanded further. Our fit to the data indicates that the total CO release rate (from the nucleus and distributed sources) relative to that of H2O is 30% near perihelion. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The volatile species released in the coma are an important clue to the composition of the cometary nucleus ices. Their identification and the measurement of their abundances is possible by remote sensing. Considerable progress has been made recently using radio and infrared spectroscopy, especially with the observations of the two exceptional comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp).) 24 molecules likely to be parent molecules outgassed from the nucleus have now been identified. Significant upper limits exist for many other species, and the presence of unidentified lines suggests that further species are to be identified. In addition, isotopic varieties have been observed for hydrogen, carbon, nitrogen and sulphur. We will review these results with a special emphasis on the reliability of the identifications and of the molecular production rate determinations. A critical point is to assess whether a given species is a genuine parent molecule outgassed from nuclear ices, or is a secondary product coming from grains or from gas-phase photochemistry. Ground-based spectral imaging, such as radio interferometry, may help resolving this problem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Laboratory measurements of physical properties of planetary ices generate information for dynamical models of tectonically active icy bodies in the outer solar system. We review the methods for measuring both flow properties and thermal properties of icy planetary materials in the laboratory, and describe physical theories that are essential for intelligent extrapolation of data from laboratory to planetary conditions. This review is structured with a separate and independent section for each of the two sets of physical properties, rheological and thermal. The rheological behaviors of planetary ices are as diverse as the icy moons themselves. High-pressure water ice phases show respective viscosities that vary over four orders of magnitude. Ices of CO2, NH3, as well as clathrate hydrates of CH4 and other gases vary in viscosity by nearly ten orders of magnitude. Heat capacity and thermal conductivity of detected/inferred compositions in outer solar system bodies have been revised. Some low-temperature phases of minerals and condensates have a deviant thermal behavior related to paramount water ice. Hydrated salts have low values of thermal conductivity and an inverse dependence of conductivity on temperature, similar to clathrate hydrates or glassy solids. This striking behavior may suit the dynamics of icy satellites.  相似文献   

6.
The distribution of some molecules and radicals (H2CO, CO, HNC, CN,?…) in the atmosphere of several comets cannot be explained only by a direct sublimation from the nucleus, or by gas phase processes in the coma. Such molecules are in part the result of a distributed source in the coma, which could be the photo and thermal degradation of dust. We present a review of the degradation processes and discuss possible interpretations of the observations in which the degradation of solid complex organic material in dust particles seems to play a major role. The knowledge of such gas production mechanisms provides important clues on the chemical nature of the refractory organic material contained in comet nuclei.  相似文献   

7.
Summary Ultraviolet observations of comets from above the Earth's atmosphere have provided excellent new results and improved older ground based observations (OH) by an order of magnitude. Satellites are especially suitable because long integration times and observations during extended time intervals are possible.The existing cometary L observations have confirmed the relatively high overall gas production rates on the order of 1030 molecule s–1. The results strongly support the concept of an icy conglomerate solid cometary nucleus. Additional observations of hydroxyl and oxygen favor water to be one of the most abundant molecules in comets. The observations are in agreement with the predominent role of water in the evaporation process of the nuclear ices but are not proof in themselves.Water did not outnumber other consitutents by orders of magnitude in comets Bennett and Kohoutek. At least in these comets, carbon-containing molecules were possibly as numerous as water. Determination of the carbon scale length is necessary for a more quantitative statement.A hydrogen velocity of 7–9 km s–1 was observed in comet Bennett as well as in comet Kohoutek for a variety of heliocentric distances and varying production rates. Determinations of the outflow velocity from L isophotes agree with line profile observations of L and H. Hydroxyl may constitute the main source for the hydrogen atoms with v H - 8 km s–1. The decay process, however, leading to this particular velocity is not yet known. Possibly a large portion of the OH radicals do not decay into hydrogen atoms or at least not into slow ones. If the high velocity component of 20 km s–1 or more comprises a larger amount (up to 50%), most of the quoted hydrogen production rates must be revised upward.The intrinsic cometary brightness is only a very crude indicator of a comet's actual gas production rate as shown by comparison of comets Bennett and TSK. Comets can be successfully used as (extra ecliptic) space probes to measure interplanetary quantities, e.g., the curvature of the extended hydrogen clouds can be used for the absolute determination of the solar emission independent of instrumental calibration. Generally time dependent hydrogen density models must be used for the interpretation. The strength of the ultraviolet L emission favors its measurement as a standard procedure for the observation of comets (possibly together with OH (3090 Å)). These observations provide the most accurate results on the total cometary gas production rate and its variation with heliocentric distance.Dedicated to Professor L. Biermann in recognition of his inspiring guidance.On leave of absence from Max-Planck-Institut für Physik und Astrophysik, Munich.  相似文献   

8.
针对航天器的使用要求,研制了密度≤30 kg/m~3轻质高效的二氧化硅气凝胶复合材料。针对深空探测的应用环境,对低密度气凝胶复合材料在不同条件下的热导率、热循环、热真空和电离总剂量等环境试验进行测试。结果表明,低密度气凝胶复合材料服役温度可达到-145~85℃,在1 kPa CO_2气氛下热导率可达到6.6 mW/(m·K)。获得了不同气氛和不同温度条件下以及同种气氛、不同压力条件下低密度气凝胶复合材料的热导率变化规律,并测试批次性材料热导率,结果表明批次热导率稳定性良好。热循环、热真空和电离辐照试验前后热导率和尺寸收缩率均未变化,表明低密度气凝胶复合材料在深空环境下保持良好的结构和稳定的隔热性能。  相似文献   

9.
Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Benkhoff  J. 《Space Science Reviews》1999,90(1-2):141-148
Surface temperature and the available effective energy strongly influence the mass flux of H2O and minor volatiles from the nucleus. We perform computer simulations to model the gas flux from volatile, icy components in porous ice-dust surfaces, in order to better understand results from observations of comets. Our model assumes a porous body containing dust, one major ice component (H2O) and up to eight minor components of higher volatility (e.g. CO, CH4, CH3OH, HCN, C2H2, H2S), The body's porous structure is modeled as a bundle of tubes with a given tortuosity and an initially constant pore diameter. Heat is conducted by the matrix and carried by the vapors. The model includes radially inward and outward flowing vapor within the body, escape of outward flowing gas from the body, complete depletion of less volatile ices in outer layers, and recondensation of vapor in deeper, cooler layers. From the calculations we obtain temperature profiles and changes in relative chemical abundances, porosity and pore size distribution as a function of depth, and the gas flux into the interior and into the atmosphere for each of the volatiles at various positions of the body in its orbit. In this paper we relate the observed relative molecular abundances in the coma of Comet C/1995 O1 (Hale-Bopp) and of Comet 46P/Wirtanen to molecular fluxes at the surface calculated from our model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In view of the low H2O abundance in the present Venusian and Martian atmospheres several observations by spacecraft and studies suggest that both planets should have lost most of their water over the early active period of the young Sun. During the first Gyr after the Sun arrived at the Zero- Age-Main-Sequence high X-ray and EUV fluxes between 10 and 100 times that of the present Sun were responsible for much higher temperatures in the thermosphere-exosphere environments on both planets. By applying a diffusive-gravitational equilibrium and thermal balance model for investigating radiation impact on the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by CO2 IR emission in the 15μm band we found expanded thermospheres with exobase levels between about 200 km (present) and 2000 km (4.5 Gyr ago). The higher temperatures in the upper atmospheres of both planets could reach “blow-off” conditions for H atoms even at high CO2 mixing ratios of 96%. Lower CO2/N2 mixing ratio or higher contents of H2O vapor in the early atmospheres could have had a dramatic impact from the loss of atmosphere and water on both planets. The duration of this phase of high thermal loss rates essentially depended on the mixing ratios of CO2, N2, and H2O in the early atmospheres and could have lasted between about 150 and several hundred Myr.  相似文献   

12.
Al5BO9、Al4B2O9等Al-B-O体系硼莫来石陶瓷具有低密度、低热导率、宽带隙等优异性能,在飞行器的隔热、透波、热密封等领域具有广泛的应用前景。本文系统介绍了这类新材料的结构、性能和制备方法。在理论计算方面,介绍了基于密度泛函理论的第一性原理计算对Al-B-O体系材料晶体结构、力学和热学性能的预测;实验方面,总结了固相反应、熔盐法、溶胶-凝胶法、热分解法和水热法等制备方法和力学、热学等实验结果,并讨论了该体系化合物的应用现状及未来发展方向。  相似文献   

13.
The interior evolution of Mercury—the innermost planet in the solar system, with its exceptional high density—is poorly known. Our current knowledge of Mercury is based on observations from Mariner 10’s three flybys. That knowledge includes the important discoveries of a weak, active magnetic field and a system of lobate scarps that suggests limited radial contraction of the planet during the last 4 billion years. We review existing models of Mercury’s interior evolution and further present new 2D and 3D convection models that consider both a strongly temperature-dependent viscosity and core cooling. These studies provide a framework for understanding the basic characteristics of the planet’s internal evolution as well as the role of the amount and distribution of radiogenic heat production, mantle viscosity, and sulfur content of the core have had on the history of Mercury’s interior. The existence of a dynamo-generated magnetic field suggests a growing inner core, as model calculations show that a thermally driven dynamo for Mercury is unlikely. Thermal evolution models suggest a range of possible upper limits for the sulfur content in the core. For large sulfur contents the model cores would be entirely fluid. The observation of limited planetary contraction (∼1–2 km)—if confirmed by future missions—may provide a lower limit for the core sulfur content. For smaller sulfur contents, the planetary contraction obtained after the end of the heavy bombardment due to inner core growth is larger than the observed value. Due to the present poor knowledge of various parameters, for example, the mantle rheology, the thermal conductivity of mantle and crust, and the amount and distribution of radiogenic heat production, it is not possible to constrain the core sulfur content nor the present state of the mantle. Therefore, it is difficult to robustly predict whether or not the mantle is conductive or in the convective regime. For instance, in the case of very inefficient planetary cooling—for example, as a consequence of a strong thermal insulation by a low conductivity crust and a stiff Newtonian mantle rheology—the predicted sulfur content can be as low as 1 wt% to match current estimates of planetary contraction, making deep mantle convection likely. Efficient cooling—for example, caused by the growth of a crust strongly in enriched in radiogenic elements—requires more than 6.5 wt% S. These latter models also predict a transition from a convective to a conductive mantle during the planet’s history. Data from future missions to Mercury will aid considerably our understanding of the evolution of its interior.  相似文献   

14.
针对涂层-基体一体化的双层结构,为测试评估其中涂层材料的导热性能,提出基于瞬态平面热源法(transient plane source, TPS)的涂层材料导热系数反演辨识方法。根据Hot-Disk实验测试原理,建立基体-涂层-探头整体的二维非稳态传热模型;结合测量过程中的瞬时温升数据信息,采用粒子群优化算法反演辨识获得涂层材料的导热系数;并通过实验和数值模拟论证了上述方法的可靠性。结果表明:该测量方法能够有效获得涂层导热系数,测试反演的数值偏差小于4.0%。最后,实际测量和反演辨识获得了一种涂层材料常温至773 K的导热系数,随温度提高呈现增大趋势,数值范围为0.18~0.29 W/(m·K)。  相似文献   

15.
The thermal properties of airless icy surfaces are providing a wealth of information on their regolith structure after eons of space weathering. Numerous observations of the thermal cycles of Jupiter and Saturn icy satellites or Centaurs and TNOs have been acquired in the latest decades thanks to the Galileo and Cassini missions and to the Spitzer and Herschel telescopes. These observations and the latest developments on thermophysical modeling which have been achieved to link the thermal inertia to the regolith structure are reviewed here. Measured thermal inertias of these surfaces covered with water ice are very low, roughly between about 1 and 100 J/m2/K/s1/2. Often interpreted as due to unconsolidated or highly porous regoliths, these low values may result from a composition of amorphous ice or from the roughness of grains defacing contacts in a regolith of normal compaction. Taken together, thermal inertias appear to increase with probed depth and to decrease with heliocentric distance. This latter effect can be easily reproduced if heat transfer is dominated by radiation in pores, despite low temperatures, because the conduction through grains is limited, either due to the presence of amorphous ice or because of the roughness of grains.  相似文献   

16.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   

17.
《中国航空学报》2020,33(5):1541-1548
Uni-directional carbon/carbon composites with high thermal conductivity are suitable to supply continuous thermal protection for future reentry vehicles since they could reduce surface temperature and ablation rates simultaneously in harsh environments. In this work, the high thermal conductivity carbon/carbon composites were prepared by chemical vapor infiltration. After heat-treatment, both their open porosity and internal friction increase due to the fiber/matrix thermal expansion mismatch; while their thermal conductive performance become better due to more complete carbon structure. With raising heat-treatment temperature from 1800 °C to 2450 °C, the mass and linear ablation rates of C/C composites with fibers vertical to the oxyacetylene torch for 60 s decrease from 0.66 mg/s and 2.95 μm/s to 0.51 mg/s and 2.05 μm/s respectively. The improved ablation resistance is resulted from the increased thermal conductivity from 282 to 508 W/(m·K) and more carbon fibers exposed to the flame during ablation, which have better oxidation resistance than those of carbon matrix. While such ablation rates become larger for composites with fibers parallel to the flame, from 1.02 mg/s and 3.73 μm/s to 1.28 mg/s and 5.01 μm/s respectively since the ablation occurred more easily through gaps at the fiber/matrix interfaces, which become larger and are always exposed to the flame for this case.  相似文献   

18.
Auroral investigations by means of rockets   总被引:1,自引:0,他引:1  
A survey of rocket experiments undertaken to study auroral zone events includes summary information about instrumentation and results in the field of energetic electrons and protons, of charged particle densities, of optical observations, of magnetic and electric fields, of bremsstrahlung X-rays, of thermal electrons, and of production rates. Other auroral investigations except those involving rockets have been largely ignored.  相似文献   

19.
 第一代热障涂层(TBCs)由氧化钇部分稳定的氧化锆(YSZ)陶瓷隔热层和金属粘结层组成,该涂层长期使用温度低于1 200℃。随着先进航空发动机向着高推重比发展,迫切要求发展新一代超高温、高隔热热障涂层材料。LaTi2Al9O19(LTA)在1 500℃长期保持相稳定,是一种非常有前景的超高温热障涂层候选材料。本文采用大气等离子喷涂(APS)制备了LTA涂层,研究了喷涂工艺对涂层微观组织结构和热物理性能的影响。结果表明沉积态涂层中含少量的非晶态,在860℃和1 130℃出现晶化峰。等离子喷涂过程中La2O3挥发量较多,导致沉积态涂层中La元素与原始粉末相比含量偏低,而其他组分的化学成分随喷涂功率变化不大。LTA涂层的热扩散系数在1 400℃下为0.3~0.4 mm2·s-1,热导率为1.1~1.6 W·m-1·K-1。1 050℃经过20小时热处理后,得到晶化的涂层在晶化温度范围内的热扩散系数和热导率值均增大。随着喷涂功率减小,涂层孔隙率增加,热导率减小。  相似文献   

20.
预测了反应烧结SiC(RBSiC)的物理及部分力学性能与游离Si含量的变化关系,并对预测值与测量值进行比较以验证其符合程度。经预测,随Si含量的增加,RBSiC的密度呈线性下降,尤其是气孔对材料密度的影响非常明显;线膨胀系数和热导率均应呈加速上升趋势,比热容稍有下降;各模量均有下降趋势。随着气孔的增加,RBSiC的膨胀量变化不明显,比热容和热导率均呈减速下降趋势。RBSiC测量值与预测值产生偏差是因为材料中Si含量的增加导致缺陷增多以及计算性能用数据有偏差所致,但预测仍能较符合RBSiC性能随Si含量变化趋势,因此认为预测值较为合理可作为性能参考值使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号