首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The gravitation and celestial mechanics investigations during the cruise phase and Orbiter phase of the Galileo mission depend on Doppler and ranging measurements generated by the Deep Space Network (DSN) at its three spacecraft tracking sites in California, Australia, and Spain. Other investigations which also rely on DSN data, and which like ours fall under the general discipline of spacecraft radio science, are described in a companion paper by Howard et al. (1992). We group our investigations into four broad categories as follows: (1) the determination of the gravity fields of Jupiter and its four major satellites during the orbital tour, (2) a search for gravitational radiation as evidenced by perturbations to the coherent Doppler link between the spacecraft and Earth, (3) the mathematical modeling, and by implication tests, of general relativistic effects on the Doppler and ranging data during both cruise and orbiter phases, and (4) an improvement in the ephemeris of Jupiter by means of spacecraft ranging during the Orbiter phase. The gravity fields are accessible because of their effects on the spacecraft motion, determined primarily from the Doppler data. For the Galilean satellites we will determine second degree and order gravity harmonics that will yield new information on the central condensation and likely composition of material within these giant satellites (Hubbard and Anderson, 1978). The search for gravitational radiation is being conducted in cruise for periods of 40 days centered around solar opposition. During these times the radio link is least affected by scintillations introduced by solar plasma. Our sensitivity to the amplitude of sinusoidal signals approaches 10-15 in a band of gravitational frequencies between 10-4 and 10-3 Hz, by far the best sensitivity obtained in this band to date. In addition to the primary objectives of our investigations, we discuss two secondary objectives: the determination of a range fix on Venus during the flyby on 10 February, 1990, and the determination of the Earth's mass (GM) from the two Earth gravity assists, EGA1 in December 1990 and EGA2 in December 1992.  相似文献   

2.
The Galileo Near-Infrared Mapping Spectrometer (NIMS) is a combination of imaging and spectroscopic methods. Simultaneous use of these two methods yields a powerful combination, far greater than when used individually. For geological studies of surfaces, it can be used to map morphological features, while simultaneously determining their composition and mineralogy, providing data to investigate the evolution of surface geology. For atmospheres, many of the most interesting phenomena are transitory, with unpredictable locations. With concurrent mapping and spectroscopy, such features can be found and spectroscopically analyzed. In addition, the spatial/compositional aspects of known features can be fully investigated. The NIMS experiment will investigate Jupiter and the Galilean satellites during the two year orbital operation period, commencing December 1995. Prior to that, Galileo will have flown past Venus, the Earth/Moon system (twice), and two asteroids; obtaining scientific measurements for all of these objects.The NIMS instrument covers the spectral range 0.7 to 5.2 , which includes the reflected-sunlight and thermal-radiation regimes for many solar system objects. This spectral region contains diagnostic spectral signatures, arising from molecular vibrational transitions (and some electronic transitions) of both solid and gaseous species. Imaging is performed by a combination of one-dimensional instrument spatial scanning, coupled with orthogonal spacecraft scan-platform motion, yielding two-dimensional images for each of the NIMS wavelengths.The instrument consists of a telescope, with one dimension of spatial scanning, and a diffraction grating spectrometer. Both are passively cooled to low temperatures in order to reduce background photon shot noise. The detectors consist of an array of indium antimonide and silicon photovoltaic diodes, contained within a focal-plane-assembly, and cooled to cryogenic temperatures using a radiative cooler. Spectral and spatial scanning is accomplished by electro-mechanical devices, with motions executed using commandable instrument modes.Particular attention was given to the thermal and contamination aspects of the Galileo spacecraft, both of which could profoundly affect NIMS performance. Various protective measures have been implemented, including shades to protect against thruster firings as well as thermal radiation from the spacecraft.The Near Infrared Mapping Spectrometer (NIMS) Engineering and Science Teams consist of I. Aptaker (Instrument Manager), G. Bailey (Detectors), K. Baines (Science Coordinator), R. Burns (Digital Electronics), R. Carlson (Principal Investigator), E. Carpenter (Structures), K. Curry (Radiative Cooler), G. Danielson (Co-Investigator), T. Encrenaz (Co-Investigator), H. Enmark (Instrument Engineer), F. Fanale (Co-Investigator), M. Gram (Mechanisms), M. Hernandez (NIMS Orbiter Engineering Team), R. Hickok (Support Equipment Software), G. Jenkins (Support Equipment), T. Johnson (Co-Investigator), S. Jones (Optical-Mechanical Assembly), H. Kieffer (Co-Investigator), C. LaBaw (Spacecraft Calibration Targets), R. Lockhart (Instrument Manager), S. Macenka (Optics), J. Mahoney (Instrument Engineer), J. Marino (Instrument Engineer), H. Masursky (Co-Investigator), D. Matson (Co-Investigator), T. McCord (Co-Investigator), K. Mehaffey (Analog Electronics), A. Ocampo (Science Coordinator), G. Root (Instrument System Analysis), R. Salazar (Radiative Cooler and Thermal Design), D. Sevilla (Cover Mechanisms), W. Sleigh (Instrument Engineer), W. Smythe (Co-Investigator and Science Coordinator), L. Soderblom (Co-Investigator), L. Steimle (Optics), R. Steinkraus (Digital Electronics), F. Taylor (Co-Investigator), P. Weissman (Co-Investigator and Science Coordinator), and D. Wilson (Manufacturing Engineer).  相似文献   

3.
Owen  T.  Encrenaz  T. 《Space Science Reviews》2003,106(1-4):121-138
This paper reviews our present knowledge about elemental and isotopic ratios in the Giant Planets and Titan. These parameters can provide key information about the formation and evolution of these objects. Element abundances, especially after the results of the Galileo Probe Mass Spectrometer in Jupiter, strongly support the formation model invoking an initial core formation (Mizuno, 1980; Pollack et al., 1996). They also suggest that solar composition icy planetesimals (SCIPs) brought the heavy elements to Jupiter. The Jupiter value of D/H appears to be representative of the protosolar value, while the D/H enrichment observed on Uranus and Neptune is consistent with the formation scenario of these planets. The 15N/14N measurement in Jupiter seems to be representative of its protosolar value. Future measurements are expected to come from the Cassini and Herschel space mission, as well as the ALMA submillimeter observatory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Both the Ulysses and Galileo spacecraft detected energetic electrons and Langmuir waves that were associated with a type III radio burst on 10 December 1990. At the time of these observations, these spacecraft were in the ecliptic plane and separated by 0.4 AU, with Galileo near the Earth at 1 AU and Ulysses at 1.36 AU. From the measured electron arrival times, the propagation path lengths of the electrons to both Ulysses and Galileo were estimated to be significantly longer than the length of the Parker spiral. These long path lengths are interpreted as due to draping of the interplanetary magnetic field lines around a CME. The onset times of the Langmuir waves at Ulysses and Galileo coincided with the estimated arrival time of the 9 keV and 14 keV electrons, respectively.  相似文献   

5.
The Galileo Probe Atmosphere Structure Instrument will make in-situ measurements of the temperature and pressure profiles of the atmosphere of Jupiter, starting at about 10-10 bar level, when the Probe enters the upper atmosphere at a velocity of 48 km s-1, and continuing through its parachute descent to the 16 bar level. The data should make possible a number of inferences relative to atmospheric and cloud physical processes, cloud location and internal state, and dynamics of the atmosphere. For example, atmospheric stability should be defined, from which the convective or stratified nature of the atmosphere at levels surveyed should be determined and characterized, as well as the presence of turbulence and/or gravity waves. Because this is a rare opportunity, sensors have been selected and evaluated with great care, making use of prior experience at Mars and Venus, but with an eye to special problems which could arise in the Jupiter environment. The temperature sensors are similar to those used on Pioneer Venus; pressure sensors are similar to those used in the Atmosphere Structure Experiment during descent of the Viking Landers (and by the Meteorology Experiment after landing on the surface); the accelerometers are a miniaturized version of the Viking accelerometers. The microprocessor controlled experiment electronics serve multiple functions, including the sequencing of experiment operation in three modes and performing some on-board data processing and data compression.  相似文献   

6.
New Horizons Mission Design   总被引:1,自引:0,他引:1  
In the first mission to Pluto, the New Horizons spacecraft was launched on January 19, 2006, and flew by Jupiter on February 28, 2007, gaining a significant speed boost from Jupiter’s gravity assist. After a 9.5-year journey, the spacecraft will encounter Pluto on July 14, 2015, followed by an extended mission to the Kuiper Belt objects for the first time. The mission design for New Horizons went through more than five years of numerous revisions and updates, as various mission scenarios regarding routes to Pluto and launch opportunities were investigated in order to meet the New Horizons mission’s objectives, requirements, and goals. Great efforts have been made to optimize the mission design under various constraints in each of the key aspects, including launch window, interplanetary trajectory, Jupiter gravity-assist flyby, Pluto–Charon encounter with science measurement requirements, and extended mission to the Kuiper Belt and beyond. Favorable encounter geometry, flyby trajectory, and arrival time for the Pluto–Charon encounter were found in the baseline design to enable all of the desired science measurements for the mission. The New Horizons mission trajectory was designed as a ballistic flight from Earth to Pluto, and all energy and the associated orbit state required for arriving at Pluto at the desired time and encounter geometry were computed and specified in the launch targets. The spacecraft’s flight thus far has been extremely efficient, with the actual trajectory error correction ΔV being much less than the budgeted amount.  相似文献   

7.
NASA's pair of Galileo spacecraft arrived at Jupiter on 7 December 1995. The Probe descended into the upper Jovian atmosphere, performing its planned sequence of scientific measurements of the properties of that medium for about an hour. This Probe has been the most ambitious planetary entry vehicle to date. It evolved over several years of planning and construction, its launch was postponed many times, for a variety of reasons; and it required more than 6 years of travel after launch to reach the planet. Its electrical power was provided by a primary Li-SO2 battery, supplemented with two thermal batteries (CaCrO4-Ca) used for firing pyrotechnic initiators during the atmospheric entry. These power sources were designed to be robust, to assure they would perform their intended function after surviving several years in space. This paper discusses the final production, qualification, and the systems testing of these batteries prior to and following launch. Their excellent performance at Jupiter confirmed their life enhancement design features  相似文献   

8.
Galileo Probe Mass Spectrometer experiment   总被引:1,自引:0,他引:1  
The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases.The instrument consists of a gas sampling system which is connected to a quadrupole mass analyzer for molecular weight analysis. In addition two sample enrichment cells and one noble gas analysis cell are part of the sampling system. The mass range of the quadrupole analyzer is from 2 amu to 150 amu. The maximum dynamic range is 108. The detector threshold ranges from 10 ppmv for H2O to 1 ppbv for Kr and Xe. It is dependent on instrument background and ambient gas composition because of spectral interference. The threshold values are lowered through sample enrichment by a factor of 100 to 500 for stable hydrocarbons and by a factor of 10 for noble gases. The gas sampling system and the mass analyzer are sealed and evacuated until the measurement sequence is initiated after the Probe enters into the atmosphere of Jupiter. The instrument weighs 13.2 kg and the average power consumption is 13 W.The instrument follows a sampling sequence of 8192 steps and a sampling rate of two steps per second. The measurement period lasts appropriately 60 min through the nominal pressure and altitude range.  相似文献   

9.
The Voyager Project, managed by the Jet Propulsion Laboratory, involves the lauching of two advanced spacecraft to explore the Jovian and Saturnian systems, as well as interplanetary space. The one-month lauch period opens on August 20, 1977, with arrivals at Jupiter in March and July of 1979, and at Saturn in November of 1980 and August of 1981. Gravity-assist swingbys of Jupiter are utilized in order to reduce the lauch energy demands needed to reach Saturn. In addition, a gravity-assist targeting option at Saturn will be maintained on the second-arriving Voyager for a possible continuation on to Uranus, with arrival in January of 1986. Flight through the Jovian and Saturnian systems will achieve close to moderate flyby encounters with several of the natural satellites, including special flyby geometry conditions for Io and Titan, as well as an Earth occultation of the spacecraft's radio signal by the rings of Saturn. The purpose of this paper is to describe the Voyager mission characteristics in order to establish a framework upon which to better understand the objectives and goals of the eleven scientific investigations which are described in subsequent papers.  相似文献   

10.
Mahaffy  P.R.  Donahue  T.M.  Atreya  S.K.  Owen  T.C.  Niemann  H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy.  相似文献   

11.
Lauretta  D. S.  Balram-Knutson  S. S.  Beshore  E.  Boynton  W. V.  Drouet d’Aubigny  C.  DellaGiustina  D. N.  Enos  H. L.  Golish  D. R.  Hergenrother  C. W.  Howell  E. S.  Bennett  C. A.  Morton  E. T.  Nolan  M. C.  Rizk  B.  Roper  H. L.  Bartels  A. E.  Bos  B. J.  Dworkin  J. P.  Highsmith  D. E.  Lorenz  D. A.  Lim  L. F.  Mink  R.  Moreau  M. C.  Nuth  J. A.  Reuter  D. C.  Simon  A. A.  Bierhaus  E. B.  Bryan  B. H.  Ballouz  R.  Barnouin  O. S.  Binzel  R. P.  Bottke  W. F.  Hamilton  V. E.  Walsh  K. J.  Chesley  S. R.  Christensen  P. R.  Clark  B. E.  Connolly  H. C.  Crombie  M. K.  Daly  M. G.  Emery  J. P.  McCoy  T. J.  McMahon  J. W.  Scheeres  D. J.  Messenger  S.  Nakamura-Messenger  K.  Righter  K.  Sandford  S. A. 《Space Science Reviews》2017,212(1-2):925-984

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

  相似文献   

12.
Interstellar dust was first identified by the dust sensor onboard Ulysses after the Jupiter flyby in February 1992. These findings were confirmed by the Galileo experiment on its outbound orbit from Earth to Jupiter. Although modeling results show that interstellar dust is also present at the Earth orbit, a direct identification of interstellar grains from geometrical arguments is only possible outside of 2.5 AU. The flux of interstellar dust with masses greater than 6 · 10–14 g is about 1 · 10–4 m –2 s –1 at ecliptic latitudes and at heliocentric distances greater than 1AU. The mean mass of the interstellar particles is 3 · 10–13 g. The flux arrives from a direction which is compatible with the influx direction of the interstellar neutral Helium of 252° longitude and 5.2° latitude but it may deviate from this direction by 15 – 20°.  相似文献   

13.
In December, 1995, after a journey of six years, the Galileo probe plunged into Jupiter's atmosphere, becoming the first artificial object to make direct contact with an outer planet. New data supplied by the probe indicated: 1) A new radiation belt around Jupiter ten times stronger than the Van Allen belt around Earth; 2) Jupiter may be much drier than predicted. Its atmosphere contains about as much water as the Sun, but this is subject to instrument calibration uncertainties, and the location of the landing in one of the driest spots on the planet; 3) Jupiter's atmosphere appears to have about three to ten times less lightning than Earth's, while the events are about 10 times stronger, both in terms of size and amount of electrical discharge; and, 4) Jupiter's winds were stronger than expected, increasing with depth, at 330 mph.  相似文献   

14.
The Near Earth Asteroid Rendezvous (NEAR) mission launched successfully on February 17, 1996 aboard a Delta II-7925. NEAR will be the first mission to orbit an asteroid and will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. It will orbit the unusually large near-Earth asteroid 433 Eros for about one year, at a minimum altitude of about 15 km from the surface. NEAR will also make the first reconnaissance of a C-type asteroid during its flyby of the unusual main belt asteroid 253 Mathilde. The NEAR instrument payload is: a multispectral imager (MSI), a near infrared spectrometer (NIS), an X-ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science investigation (RS) uses the coherent X-band transponder. NEAR will improve our understanding of planetary formation processes in the early solar system and clarify the relationships between asteroids and meteorites. The Mathilde flyby will occur on June 27, 1997, and the Eros rendezvous will take place during February 1999 through February 2000.  相似文献   

15.
The objective of the Nephelometer Experient aboard the Probe of the Galileo mission is to explore the vertical structure and microphysical properties of the clouds and hazes in the atmosphere of Jupiter along the descent trajectory of the Probe (nominally from 0.1 to > 10 bars). The measurements, to be obtained at least every kilometer of the Probe descent, will provide the bases for inferences of mean particle sizes, particle number densities (and hence, opacities, mass densities, and columnar mass loading) and, for non-highly absorbing particles, for distinguishing between solid and liquid particles. These quantities, especially the location of the cloud bases, together with other quantities derived from this and other experiments aboard the Probe, will not only yield strong evidence for the composition of the particles, but, using thermochemical models, for species abundances as well. The measurements in the upper troposphere will provide ground truth data for correlation with remote sensing instruments aboard the Galileo Orbiter vehicle. The instrument is carefully designed and calibrated to measure the light scattering properties of the particulate clouds and hazes at scattering angles of 5.8°, 16°, 40°, 70°, and 178°. The measurement sensitivity and accuracy is such that useful estimates of mean particle radii in the range from about 0.2 to 20 can be inferred. The instrument will detect the presence of typical cloud particles with radii of about 1.0 , or larger, at concentrations of less than 1 cm3.Deceased.  相似文献   

16.
17.
Several hundred D-sized, Li-SO2 battery cells have been in a carefully controlled quiescent storage test for up to 14 years, starting at Honeywell but completing at the NASA Ames Research Center, in support of the Atmospheric Probe portion of the Galileo Mission to the planet Jupiter. This population of cells includes similar samples from 8 different manufacturing lots; the earliest from October 1981, the latest from October 1988. The baseline samples have been divided among several storage chambers, each having its own constant temperature, respectively, set between 0°C to 40°C. Non-invasive measurements have been made repeatedly of open circuit voltage and internal resistance (at 1000 Hz). At intervals, a small portion of the cells has been removed from storage and fully discharged under repetitive conditions, thus assessing any storage related loss of discharge capacity. The results show that for storage up to 20°C the cells have excellent stability. Above 20°C noticeable degradation occurs  相似文献   

18.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   

19.
Using the Earth albedo model and the orbital dynamics model developed as part of the First Look Project (Fast Initial In-Orbit Identification of Scientific Satellites) the terrestrial albedo is evaluated considering the orbits of some scientific missions as Gravity Probe B, MICROSCOPE and STEP. The model of the Earth albedo is based on the reflectivity data measured by NASA’s Earth Probe satellite, which is part of the TOMS project (Total Ozone Mapping Spectrometer). The reflectivity data are available daily, on line at the TOMS website, and they fluctuate because of changes in clouds and ice coverage and seasonal changes. The data resolution partitions the Earth surface into a number of cells. The incident irradiance on each cell is used to calculate total radiant flux from the cell. With the radiant flux from each cell, the irradiance at the satellite is calculated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号