首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
固体火箭发动机的声学分析及燃烧稳定性预估   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种预估固体火箭发动机燃烧稳定性的方法。文中着重研究了燃烧室内腔声场的有限元数值分析问题,并应用声学有限元素法对一个二维轴对称装药发动机燃烧室内腔进行了固有频率及固有振型计算。随后,在声学分析的基础上对该发动机做了燃烧稳定性预估。其结果与多次试车的结果一致。最后还就声学分析的验证,减少机时和内存,微粒尺寸的确定,预估方法及计算程序的通用性等问题进行了讨论。  相似文献   

2.
燃烧不稳定不仅影响航空发动机的工作稳定性,而且还是造成燃烧室火焰筒薄壁结构声振耦合疲劳破坏的重要原因.燃烧不稳定性的非稳态运动与燃烧室火焰筒的固有声学振型密切相关,因此对燃烧室火焰筒进行声学特性分析具有重要意义.为此建立了航空发动机环形燃烧室火焰筒声学有限元模型,分析了燃烧室火焰筒的声学特性.分别对常温常压下和高温高压下燃烧室火焰筒的声学模态进行了分析,获得了相应的声学固有频率和振型,为发动机燃烧室结构抗疲劳设计提供了参考.  相似文献   

3.
高马赫数超燃冲压发动机性能数值研究   总被引:3,自引:1,他引:2       下载免费PDF全文
周建兴  汪颖 《推进技术》2014,35(4):433-441
考虑水平起降要求,构造了一种采用流线追踪内转式进气道、圆形截面燃烧室的双侧布局高马赫数超燃冲压发动机,设计点马赫数为7。对Ma 7~10范围内的发动机性能进行了数值模拟,给出了发动机进气道性能、整机性能,对燃烧室内的燃料掺混和燃烧情况进行了分析。此外,采用一维性能计算方法对燃烧室性能进行了预估。研究表明,此发动机性能可满足飞行器推阻匹配需求;一维性能结果与三维数值模拟的压力分布处于15%的误差范围内,可用于发动机性能的快速预估。  相似文献   

4.
大涡模拟模型燃烧室燃烧性能计算   总被引:1,自引:2,他引:1  
对带双级扩压器的模型燃烧室气液两相瞬态喷雾燃烧过程,在三维贴体坐标系下采用欧拉-拉格朗日两相大涡模拟方法进行数值研究,同时采用多维经验分析法预估燃烧性能.采用 k 方程亚网格尺度模型模拟亚网格湍流黏性;亚网格EBU(eddy-break-up)燃烧模型预估化学反应速率;多维经验分析法计算燃烧性能;并在非交错网格体系下气相采用SIMPLE(semi-implicit method for pressure-linked equations)算法对控制方程进行求解,液相采用随机离散模型,两相之间的耦合采用PSIC(particle-source-in-cell)算法.通过大涡模拟瞬态及时均计算结果表明:与粒子图像测速仪(PIV)测量的瞬态速度场、出口温度分布试验数据吻合,表明在三维贴体坐标系下采用欧拉-拉格朗日两相大涡模拟方法,数值模拟模型燃烧室两相喷雾燃烧流场,所采用的亚网格模型可以用于燃烧室气液两相喷雾燃烧流场的大涡模拟;燃烧性能计算结果与试验测量结果基本一致,说明所采用多维经验分析法可以用来数值模拟航空发动机燃烧室燃烧性能的计算,特别是污染物的预估,为设计低污染高性能航空发动机燃烧室提供有用的设计依据.   相似文献   

5.
喷嘴损伤对环形回流燃烧室性能的影响   总被引:4,自引:2,他引:2  
利用Fluent商用软件对模型环形回流燃烧室三维两相喷雾燃烧流场进行了数值模拟,研究了喷嘴损伤引起雾化效果变化对燃烧室性能的影响,采用可实现的k-ε模型模拟湍流黏性、离散相模型(DPM)通过添加UDF(user defined function)程序追踪燃油运动轨迹、正庚烷作替代燃料及层流小火焰模型.计算结果表明:采用的数值模拟方法可以预估实际燃烧室燃烧流场以及喷嘴损伤对其性能的影响,雾化性能变化导致燃烧室出口温度分布不均匀度升高,品质降低,并导致燃烧室燃烧效率降低;当燃油流量降低约19%时,燃烧室性能已不符合运行要求.   相似文献   

6.
刘珍 《推进技术》2002,23(2):126-128
以固体推进剂燃烧公式为基础,采用计算力学中的数值积分及插值法,并利用计算机技术,研究了用燃烧室药柱的实际肉厚,确定固体火箭发动机试验曲线中燃烧时间的新方法,在点火发动机中应用的结果表明,此方法解决了试验曲线数据处理结果散布范围较大的问题,提高了燃速预估的准确性。  相似文献   

7.
低热值气体燃料燃烧室数值模拟与试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以某型航空发动机燃烧室为研究对象,对低热值燃料燃烧室进行了数值模拟和试验研究。采用RNGk-ε模型、小火焰紊流燃烧模型和P-1辐射模型,预估了紊流特性、化学反应速率和辐射通量;应用SIMPLE算法,对离散方程进行求解。计算结果与试验数据比较表明二者基本吻合,这说明计算方法合理,可用来估算低热值燃料燃烧室的燃烧性能。  相似文献   

8.
针对于传统的航空发动机燃烧室设计过程计算周期长,加工和试验成本高,制约发动机设计周期的问题,基于航空发动机燃烧室模型,结合POD-PCE-Kriging(本征正交分解-多项式混沌展开-Kriging)模型和粒子群优化(PSO)算法开展了燃烧性能代理模型的构建和多目标优化设计。通过试验,应用POD-PCE-Kriging模型预测结果与一维程序计算结果进行对比分析,针对于燃烧效率和总压损失预测值的方均根误差分别为0.006 3%和0.122 7%。对设计变量参数开展寻优,并对获取的Pareto最优解集进行了分析,为满足性能指标的先进航空发动机燃烧室设计提供了物理见解,可以快速准确获得满足最优性能的设计参数,缩短航空发动机的研制周期。  相似文献   

9.
大直径液氧煤油发动机燃烧室抗脉动隔板技术   总被引:1,自引:0,他引:1       下载免费PDF全文
曹晨  陈建华  赵剑  付平 《推进技术》2019,40(2):331-338
随着发动机推力的增大,燃烧室直径也随之增大,表征燃烧室热声学特性的振型、频率及其组合振型更为复杂,燃烧室带与不带抗脉动隔板以及隔板的结构参数等对声学特性影响明显,直接影响燃烧不稳定性的裕度。为了研究抗脉动隔板结构参数对燃烧室声学特性的影响,本文基于三维柱坐标系声波动理论和COMSOL仿真平台,研究了抗脉动隔板结构对火箭发动机燃烧室声学特性的影响。通过单喷嘴声学模拟实验,验证了该仿真方法的有效性。分析了隔板高度、厚度和冷区长度对燃烧室声学特性的影响规律。研究结果表明:隔板高度由40mm增加至120mm时,燃烧室一阶切向和二阶切向振型的频率分别下降了22%和31%;隔板厚度和冷区长度对燃烧室声学频率的影响不超过5%;大推力补燃发动机燃烧室直径大,需采用结构形式更为复杂的抗脉动隔板来针对性地抑制横向振型。  相似文献   

10.
为探究液氧/煤油液体火箭发动机气液同轴喷嘴模型燃烧室具有良好稳定性的原因,采用非稳态雷诺平均(URANS)方法数值研究了其燃烧不稳定性和声学特征。两相燃烧条件下,燃烧室压力振荡幅值约为室压的10%左右、最大不超过25%,且以纵向和横向振型为主。一周六径隔板对横向振型具有很强的抑制作用,但对纵向振型影响较小。与液-液撞击式液氧/煤油发动机模型燃烧室相比,本文研究的燃烧室中煤油液滴没有发生超临界蒸发现象,第三邓克尔数较小,诱发燃烧不稳定性的激励源较弱。进一步通过数值定容弹激发了燃烧室多模态声学特征压力振荡,并得到了其振荡特征频率、幅值和衰减率。结果表明,气喷嘴具有四分之一波长喷嘴特征,能显著减小目标振型的幅值,而集气腔对纵向振型具有很强的抑制作用,同时对其他振型也有程度不同的抑制效果。因此,较弱的燃烧不稳定性激发机制以及隔板、气喷嘴和集气腔对纵向和横向振型很强的抑制作用,使得该液氧/煤油发动机气液同轴燃烧室具有很好的稳定性。  相似文献   

11.
孙兵兵  李笑江  陈涛  王晗  吴雄岗 《推进技术》2021,42(5):1053-1058
为了获得复杂装药发动机工作过程中阻尼特性的变化规律,首先利用有限元分析方法对不同工作时刻时的燃烧室声腔结构进行了数值仿真计算,得到复杂装药发动机工作过程中的声模态及其变化规律;基于此,计算并分析了复杂装药发动机装药燃烧过程中常见阻尼因素的变化规律,结果表明,喷管阻尼系数与壁面阻尼系数占总阻尼系数百分比逐渐减小,相反微粒阻尼系数占总阻尼系数的百分比逐渐增大,在发动机工作后期,发动机阻尼系数最小,从而导致发动机后期的工作稳定性较差,小扰动易被扩大为大扰动; 在发动机的所有阻尼中,喷管阻尼在发动机工作初期起主导作用,而微粒阻尼在工作后期起主导作用。  相似文献   

12.
某固体火箭发动机工作末期不稳定燃烧   总被引:2,自引:2,他引:2  
针对某固体火箭发动机工作末期出现的压力振荡现象开展了数值研究与线性预估.通过有限元方法得到了燃烧室空腔的声模态及固有声振频率,轴向1阶与2阶声振频率随燃面退移先减小后增大;利用大涡模拟方法分析了燃烧室内的流场特性及压力振荡特性,振荡频率与试验结果一致,判定该发动机出现了以轴向1阶声振频率为主导的不稳定燃烧;其次分析了发动机内阻尼特性,其阻尼随燃面退移不断减小;最后通过不稳定燃烧线性理论解释了该发动机工作末期出现压力振荡的机理,表明燃面退移过程中喉通比下降是导致发动机由线性稳定转向线性不稳定状态的关键因素.   相似文献   

13.
自燃推进剂火箭发动机燃烧不稳定性研究   总被引:4,自引:1,他引:3  
聂万胜  庄逢辰 《推进技术》2000,21(4):63-65,76
发展了自燃推进剂(MMH/NTO)火箭发动机燃烧不稳定性的综合分析模型。以蒸发作为燃烧速率控制过程,研究了燃烧不稳定性的机理,提出了轴向声腔模型并对其抑制不稳定燃烧的特性进行了数值模拟研究,得到了声槽特性频率驿燃烧不稳定性的影响规律,描绘出声腔影响燃烧不稳定性的具体场景,数值模拟结果与理论分析及试车结果是相符的,对轴向声槽的分析设计将具有广泛的指导意义。  相似文献   

14.
固体火箭发动机中声场对凝聚相粒子的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
固体火箭发动机中凝相粒子的空间非均匀分布不但会改变粒子的阻尼效果,还可能对金属粒子的分布式燃烧产生影响,从而显著改变发动机内的增益和阻尼。粒子的空间分布受发动机内部固有的声场压强振荡的影响,进而影响粒子对声振荡的阻尼效果。本文将连续相-离散元(CFD-DEM)耦合模型应用于固体火箭发动机中多物理场作用下的粒子行为研究,实现了声场对粒子行为的影响研究,获得了发动机两相流流动与声场的耦合作用规律。结果表明:CFD-DEM模型可以获得其他模型无法得到的颗粒微观信息包括颗粒与颗粒间的碰撞、颗粒与壁面的碰撞以及颗粒与气相间的相互作用等。另一方面径向声场力会使得凝聚相粒子往发动机燃烧室的中心区域汇聚,并且形成稳定宽度的粒子质量分数高达90%以上的聚焦带,而在壁面区域基本为粒子真空区域,粒子的空间不均匀分布极其显著。轴向声场力(发动机一阶基频声波)作用下颗粒分布在声场波节节点后可以观察到较高浓度粒子区减少,颗粒分布不似无声场作用那样密集,且颗粒相沿轴向的速度分布呈现先增大后减小的变化规律,在节点附近达到峰值。  相似文献   

15.
对热力发动机中存在的线性振荡燃烧的研究,通常假设速度耦合与压力耦合的作用独立无关且作用结果可以线性相加。本文通过对压耦合与速度耦合现象的分析,说明了使这一假设不合理的平均流速界限,并给予了实验证明。  相似文献   

16.
燃烧不稳定问题是今后相当长一段时间内固体火箭发动机燃烧流动领域需要解决的重要问题。由燃烧响应主导的燃烧不稳定问题具有很典型的非线性燃烧不稳定特征,是当前研究的重点与难点。采用非线性方法开展固体火箭发动机的非线性动力学分析,可以获得非线性燃烧不稳定的触发条件与稳定性区间,以及不稳定的增长过程和最终达到的极限环振荡状态。压强耦合响应、速度耦合响应、分布式燃烧、粒子阻尼和喷管阻尼是燃烧不稳定分析中重要的增益和阻尼项,在非线性燃烧不稳定分析中,这些增益与阻尼同样需要非线性表达式,需要开展精细的实验研究和理论分析,以获得更符合发动机实际工作状况的推进剂燃烧响应和铝分布式燃烧的非线性模型。深刻认识压强振荡增长过程中各阶模态间能量的传递规律,是揭示非线性不稳定触发机理和极限环形成过程的关键所在。在实验验证技术方面,需要建立起地面实验外部激励和飞试状态实际激励环境的等效分析方法,发展能够有效模拟实际飞行时发动机燃烧不稳定环境的地面等效模拟实验方法。  相似文献   

17.
应用数值模拟分析方法对液体火箭发动机径向不稳定燃烧完成了初步分析,并分析了声腔的阻尼特性。数值方法采用一步隐式预测、两步显式校正进行非定常流动计算的PISO算法。建立了不稳定燃烧声腔分析模型及压力挑动模型,通过模拟计算压力扰动波的传播过程考察发动机的燃烧稳定性。  相似文献   

18.
Vortex-acoustic coupling is one of the most important potential sources of combustion instability in solid rocket motors (SRMs). Based on the Von Karman Institute for Fluid Dynamics (VKI) experimental motor, the influence of the thermal inhibitor position and temperature on vortex-shedding-driven pressure oscillations is numerically studied via the large eddy simulation (LES) method. The simulation results demonstrate that vortex shedding is a periodic process and its accurate frequency can be numerically obtained. Acoustic modes could be easily excited by vortex shedding. The vortex shedding frequency and second acoustic frequency dominate the pressure oscillation characteristics in the chamber. Thermal inhibitor position and gas temperature have little effect on vortex shedding frequency, but have great impact on pressure oscillation amplitude. Pressure amplitude is much higher when the thermal inhibitor locates at the acoustic velocity anti-nodes. The farther the thermal inhibitor is to the nozzle head, the more vortex energy would be dissipated by the turbulence. Therefore, the vortex shedding amplitude at the second acoustic velocity antinode near 3/4L (L is chamber length) is larger than those of others. Besides, the natural acoustic frequencies increase with the gas temperature. As the vortex shedding frequency departs from the natural acoustic frequency, the vortex-acoustic feedback loop is decoupled. Consequently, both the vortex shedding and acoustic amplitudes decrease rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号