首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
再入钝锥体烧蚀热防护内部热响应的数值仿真   总被引:1,自引:0,他引:1  
张涛  陈德江 《航空动力学报》2013,28(10):2248-2255
研究了烧蚀热防护系统内部热响应的计算模型和计算方法.采用碳化层-热解面-原始材料层模型,建立碳基材料内部热响应物理模型和数学模型,利用有限元法分析和计算再入目标热防护系统轴对称内部热响应.着重研究和分析了轴对称烧蚀过程中热解气体质量流率计算方法和传热机制.将热解气体与碳化层之间的对流换热处理为源项,通过保证刚度矩阵和形函数矩阵的正定对称性可以加速温度场计算收敛.计算表明:热解气体的质量流量主要由厚度方向构成,占80%以上;头部驻点附近最大烧蚀厚度接近10mm,需要采用抗烧蚀能力强的碳-碳材料,身部烧蚀量小于2mm,可以采用密度较小的碳-酚醛材料.   相似文献   

2.
固体火箭发动机绝热层温度场的有限元计算方法   总被引:2,自引:1,他引:2  
张涛  孙冰 《航空动力学报》2009,24(6):1407-1412
利用有限元法计算了固体火箭发动机绝热层在移动边界条件下的二维温度场.采用碳化层-热解面-原始材料的二维碳化烧蚀模型;推导了将热解气体对流项作为源项的有限元计算方法;采用当量对流换热系数和当量热流的方法处理复杂边界条件.采用无限插值法获得移动边界条件下的三角形网格,提高了网格生成速度和网格质量.计算结果表明,利用有限元法计算固体火箭发动机绝热层的温度场收敛性和稳定性都较好.   相似文献   

3.
通过对高粘度SiO2材料的烧蚀及传热分析,建立了硅基材料的固体层一液体层的耦合烧蚀计算方法.给出了材料烧蚀过程中烧蚀速度、液层厚度、液层温度及固体温度的表达式及求解方法,并把计算结果与电弧加热器平板烧蚀试验的液层厚度分布及烧蚀量的精确测量结果进行了对比.结果表明新模型的液层厚度及烧蚀量与实验结果符合很好.  相似文献   

4.
烧蚀端头的瞬变外形及内部温度分布   总被引:3,自引:4,他引:3  
本文通过对传热、烧蚀和形状变化的耦合计算取得了各向同性和各向异性石墨再入端头帽的温度场。直接从热传导偏微分方程出发,通过座标变换,建立三层无条件稳定的显式差分格式,计算简捷。在碳表面,包括十七组元的平衡烧蚀计算表明,壁面的主要化学成分有N_2、CO、C_2N、C_3、CN等几种。对非线性形状变化方程,采用可显式计算的隐式差分格式,稳定性良好。二种石墨端头的温度场差别很大,但算例条件下的总烧蚀量相差无几。  相似文献   

5.
气相环境下EPDM绝热材料双区体烧蚀模型   总被引:3,自引:0,他引:3       下载免费PDF全文
王书贤  李江  蔡霞 《推进技术》2016,37(2):378-385
针对气相环境下EPDM绝热材料的烧蚀行为建立了双区体烧蚀模型,着重考虑了沉积反应、气流剥蚀和膨胀现象。多孔介质区和固体区分开求解,采用交界面温度耦合的数值处理方法。对气相环境下的烧蚀实验开展了数值计算,分析了影响炭化层孔隙结构、质量烧蚀率的主要因素,计算结果与实验结果吻合较好。计算还获得了炭化层内烧蚀气体流速的量级是毫米到厘米,相对压强的量级是103~104Pa以及相对压强的分布情况。  相似文献   

6.
炭化层疏松/致密结构的三元乙丙烧蚀模型   总被引:2,自引:2,他引:2  
分析了烧蚀发动机和高过载烧蚀发动机实验得到EPDM(三元乙丙)的炭化层结构,获得烧蚀过程炭化层结构形成变化的机理,建立了考虑疏松致密结构的多孔炭化层物理模型.模型中炭化层为非均质的多孔可渗透介质,孔隙内部存在气体扩散和热化学反应;炭化层中热解气体沉积效应形成致密结构.在多孔介质流动与传热算法基础上建立了模拟绝热材料烧蚀过程的数值方法,计算得到的炭化率、质量烧蚀率和炭化层的多孔结构与实验结果相吻合,证明了本烧蚀模型能够准确地描述绝热材料的热化学烧蚀过程,并为耦合烧蚀模型的建立提供数值算法基础.   相似文献   

7.
固体火箭喷管烧蚀和传热的基本问题   总被引:5,自引:6,他引:5       下载免费PDF全文
何洪庆 《推进技术》1993,14(3):22-28,35
总结固体火箭复合结构全喷管烧蚀和传热计算中的基本问题:二相跨音速喷管粘流,燃气与喷管壁面的换热,不同材料的热化学烧蚀模型,粒子侵蚀,烧蚀控制机制,移动边界下的瞬时导热,烧蚀与传热的耦合,复合结构全喷管烧蚀和传热的CAD,以及测试等。在解决基本问题的基础上,对复合结构全喷管可获得其烧蚀率和温度分布。  相似文献   

8.
建立电机三维热流场模型,基于流固耦合法,计算大容量高速永磁电机温度场。通过样机温升试验,验证了仿真模型正确性。在此基础上选取导热系数这一影响温度场重要因素作为研究对象,通过控制其在合理范围变化,分析电机温度场对各部件导热系数的敏感性程度。结果为以后高速永磁电机温度场仿真中导热系数的确定提供了参考。  相似文献   

9.
烧蚀对再入体绕流电子数密度影响的数值研究   总被引:1,自引:0,他引:1  
从化学非平衡NS方程或其简化形式(粘性激波层方程、PNS方程)出发,采用分区求解的方法数值模拟含泰氟隆烧蚀产物的高超声速再入体流场.首先计算分析了RAM-C飞行试验状态和一个考核算例,对计算方法和程序作了初步验证.其次耦合烧蚀壁面边界条件和流体控制方程,采用19组分28个反应的化学反应模型,对有、无烧蚀情况下高超声速钝锥体再入绕流及底部流场进行了数值模拟,深入分析了烧蚀产物对再入流场电子数密度及温度分布的影响.  相似文献   

10.
高温加热条件下,由于聚四氟乙烯的热解,对烧蚀温度场计算结果有较大影响,为了提高聚四氟乙烯烧蚀温度场计算精度,建立了聚四氟乙烯烧蚀温度场计算方法,对电弧风洞加热条件下聚四氟乙烯表面烧蚀热响应特性进行了验证研究。理论计算和试验测量结果对比表明:230~323℃升温区间内,随时间增长,温度逐渐升高,理论计算与试验测量结果变化趋势一致;323~680℃升温区间内,随时间增长,试验测量温度逐渐升高,理论计算温度为定值,理论计算与试验测量结果存在一定偏差;680~390℃降温区间内,随时间增长,温度降低,理论计算高于试验测量值,这与理论计算烧蚀量存在偏差有关。采用聚四氟乙烯材料烧蚀温度场计算方法,可以有效模拟高温加热条件下聚四氟乙烯热响应特性,从而为产品设计提供参考。  相似文献   

11.
高硅氧/酚醛喷管扩张段的温度场计算与测定   总被引:1,自引:4,他引:1       下载免费PDF全文
王思民  周旭  何洪庆 《推进技术》1990,11(5):23-29,68
本文通过圆柱座标系径向瞬时热传导偏微分方程,对喷管硅基内衬扩张段进行了温度分布数值计算.喷管结构是以石墨为喉衬,高硅氧/酚醛为收敛段、扩张段内衬,并为喉部背衬;壳体是钢.计算中考虑材料烧蚀时形成炭化层、热解层、原始材料层等多层结构,以及烧蚀边界的退移和材料物性随温度的变化.通过座标变换,将移动边界问题转化为定边界问题,计算结果与实验结果吻合良好.  相似文献   

12.
本文借助于运动坐标系用显式有限元算法求解烧蚀动边界的传热问题。通过坐标变换,在变换平面内确定固定的有限元结点,物理平面内对应的结点随边界的烧蚀而运动。在线性插值函数模式下温度的时间导数在三角形单元中处处相等的假设下导出有限元方程的显式计算格式。对横观各向同性材料的端头帽在再入飞行中的烧蚀和瞬时温度场的计算结果与用有限差分法计算的结果相互吻合。  相似文献   

13.
本文用数值模拟的方法研究了大尺度物体上所受的非线性波与水流的共同作用力。非线性水波与水流相互作用场的计算采用有限差分法,引入坐标变换获得了固定计算域,用松弛迭代法求解差分方程。波流联合作用力的计算用时间步进法,每一时刻采用简单格林函数的边界元法求解。入射势采用以上波流场的计算结果,开边界选取离物体足够远,其上的速度势为入射势。  相似文献   

14.
周印佳  张志贤  付新卫  阿嵘 《航空学报》2021,42(7):124520-124520
针对再入飞行器烧蚀热防护系统烧蚀与瞬态温度耦合响应预测问题,提出了一体化计算方法,为再入飞行器烧蚀热防护设计提供包括气动热、烧蚀后退、瞬态温度响应在内的动态响应预测依据。该方法采用Sutton-Graves和Tauber-Sutton理论计算驻点的对流热流和辐射热流,通过表面能量平衡整合具有较高精度的烧蚀模型,并通过Landau变换简化烧蚀后退带来的节点删除过程并保证空间离散精度,最后求解瞬态有限差分热传导方程获得烧蚀热防护系统的热环境、烧蚀过程和温度响应。通过对比计算碳-碳材料钝头体地球再入过程和酚醛浸渍基碳烧蚀体(PICA)材料电弧风洞烧蚀模拟,对该方法对于不同材料体系的适用性进行了验证。计算结果表明:对于密度较高的碳-碳材料,本文计算结果与经典的热平衡积分法吻合较好,偏差在7%以内;而对于低密度材料(如烧蚀性能对压力高度敏感的PICA材料),随着热流和压力的增大,预测偏差逐渐增大。所提出的方法实现了气动热、烧蚀、瞬态温度响应耦合过程的一体化计算,在保证精度的前提下实现快速计算分析,为再入飞行器烧蚀热防护设计提供依据。  相似文献   

15.
刘波 《航空动力学报》1991,6(3):207-210,282
本文在近似于势、流函数的正交面上采用解析方法进行亚音速叶型设计。将改写后的无旋条件与连续方程联立求解,可在计算面上将叶型设计问题用标准拉普拉斯方程来表示。这一方法的优点是在流场计算中用解析解取代数值迭代计算过程,求解简便,节省计算机时,并为从理论上分析各种不同叶型的设计特性提供了便利条件。文中提供的算例表明,方法是有效和可行的。   相似文献   

16.
 One of the most important characteristic signatures of the exhaust plume from rocket motor is the afterburning phenomenon, and the injected water into the plume could inhibit the afterburning. The calculation model for the gas-liquid multiphase flow field with chemical reaction in the plume is built. By inducing the energy source terms caused by the vaporization of liquid water, condensation of the vapor and chemical reaction in the energy equation, the gas-liquid multiphase flow field and the afterburning phenomenon are calculated in a coupling way. Mixture multiphase flow model is used to calculate the gas-liquid flow field, and the vaporization mechanism is used to investigate the water vaporization process. The temperature contours are obtained and accord well with the experimental photos. The mass fraction contours of primary species are obtained, which can indicate the extent of inhibition effect of water injection on the afterburning phenomenon in the plume. When water is injected into the plume, the region of afterburning reduces a lot, and temperature on the ground wall declines rapidly, which can de-crease the ablation of the combustion gas to the launch ground.  相似文献   

17.
固体火箭喷管中的烧蚀控制机制   总被引:1,自引:3,他引:1       下载免费PDF全文
何洪庆  周旭 《推进技术》1993,14(4):36-41
对碳基材料,以热化学烧蚀三方程模型为基础,在考虑粒子侵蚀,烧蚀与传热耦合的情况下,进行了全喷管烧蚀控制机制的研究,喷管中的烧蚀控制机制有化学动力学控制,扩散控制和双控制三种机制。通过研究,得到如下结论:1)对于由扩散控制和化学动力学控制确定的烧蚀率相差约20倍以上时,可以简化为按烧蚀率低的一种控制机制来计算;否则,应当按既考虑扩散控制,又考虑化学动力学控制的双控制机制来计算。2)在固体火箭喷管中,大体上喉部和扩张段的烧蚀是化学动力学控制的,而收敛段的烧蚀是由扩散控制的。3)由于在收敛段由两种机制控制的烧蚀率相差较小,因此,在收敛段的烧蚀率应当按双控制机制来计算。喉部和扩张段的烧蚀可简化为动力学控制机制。  相似文献   

18.
武锦辉  王高  刘吉 《导航与控制》2019,18(5):107-112
航空发动机内腔温度高、变化快,传统接触测试方法需要破坏结构或加载传感器于内腔获取温度数据。针对这种高温测量应用需求,从热传导和热弹性理论出发,理论分析了温度场作用下的钢质薄板变形特性。基于热弹性的基本方程和边界条件,研究了符合轴对称原则的金属薄板的应力、应变、位移、温度之间的数学关系,建立了多项式方程求解金属薄板温度位移模型。依据金属薄板材料参数和边界约束条件,有限元仿真分析了金属薄板的热变形状态,仿真结果与建立的模型计算数据比对验证基本一致,初步验证了温度计算模型的可靠性,为微变形内推温度测量提供可能。  相似文献   

19.
建立了径向轴承在载荷和速度突然变化时的三维数学模型,模型中考虑了轴瓦的热变形,在油膜和轴瓦交界面采用热流连续的理想边界条件,数值模拟轴承的瞬态温度场,并对轴承的瞬态性能进行分析。在每一瞬时,用Newton—Raphson算法同时求解Reynolds方程、膜厚方程和轴颈运动方程获得轴承油膜的压力分布和轴颈中心的运动速度,然后数值积分压力分布得到轴承的油膜力,差分运动速度得到轴颈中心位置和运动加速度。用一有效的有限差分法同时求解油膜和轴瓦的温度控制方程。最后将Reynolds方程和能量方程通过节点压力和温度相耦合获得轴承的瞬态三维温度场。结果表明本所介绍的方法收敛快,大大节约计算时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号